# Atti Accademia Nazionale dei Lincei <br> Classe Scienze Fisiche Matematiche Naturali RENDICONTI 

## Chandra Mani Prasad

# Relative associate curvature of a congruence and $\lambda$-pseudogeodesics of a Finsler subspace 

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 52 (1972), n.5, p. 702-707.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1972_8_52_5_702_0](http://www.bdim.eu/item?id=RLINA_1972_8_52_5_702_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria differenziale. - Relative associate curvature of a congruence and $\lambda$-pseudogeodesics of a Finsler subspace. Nota di Chandra Mani Prasad, presentata ${ }^{\left({ }^{()}\right)}$dal Socio E. Bompiani.

Riassunto. - Il presente lavoro tratta della estensione della prima curvatura relativa e della pseudogeodesica (Pan [2], [3]) di un sottospazio riemanniano rispetto a un sottospazio di Finsler.

## I. INTRODUCTION

The metric function of a Finsler space $\mathrm{F}_{n}$ referred to local coordinates $x^{i}(i=\mathrm{I}, 2, \cdots, n)$ is denoted by $\mathrm{F}\left(x, x^{\prime}\right)$. Let $\mathrm{F}_{m}$ with local coordinates $u^{\alpha}(\alpha=\mathrm{I}, 2, \cdots, m)$ be a subspace of $\mathrm{F}_{n}$. Let $\mathrm{C}: u^{\alpha}=u^{\alpha}(s)$ be a curve of $\mathrm{F}_{m}, s$ being its arc-length. At every point of C , we have a line-element denoted by $\left(u^{\alpha}, u^{\prime \alpha}\right)$. The metric tensors $g_{\alpha \beta}\left(u, u^{\prime}\right)$ and $g_{i j}\left(x, x^{\prime}\right)$ of $\mathrm{F}_{m}$ and $\mathrm{F}_{n}$ respectively are related by

$$
\begin{equation*}
g_{\alpha \beta}\left(u, u^{\prime}\right)=g_{i j}\left(x, x^{\prime}\right) \mathrm{B}_{\alpha}^{i} \mathrm{~B}_{\beta}^{j} \tag{I.I}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{B}_{\alpha}^{i}=\frac{\partial \dot{x}^{i}}{\partial u^{\alpha}} \quad, \quad u^{\prime \alpha}=\mathrm{d} u^{\alpha} / \mathrm{d} s \quad \text { and } \quad x^{\prime i}=\mathrm{d} x^{i} / \mathrm{d} s \tag{1.2}
\end{equation*}
$$

The $n-m$ unit vectors $n_{(\sigma)}^{i}(x),(\sigma=m+\mathrm{I}, \cdots, n)$, normal to $\mathrm{F}_{m}$, are given by the solutions of the equations [r]

$$
\begin{align*}
& n_{(\sigma) i} \mathrm{~B}_{\alpha}^{i}=g_{i j}\left(x, n_{(\sigma)}\right) n_{(\sigma)}^{j} \mathrm{~B}_{\alpha}^{i}=0  \tag{I.3}\\
& g_{i j}\left(x, n_{(\sigma))} n_{(\sigma)}^{i} n_{(\nu)}^{j}=\cos \left(n_{(\sigma)}, n_{(\nu))}\right)\right.
\end{align*}
$$

The covariant derivative of $\mathrm{B}_{\alpha}^{i}$ with respect to $u^{\beta}$ is given by

$$
\begin{equation*}
\mathrm{I}_{\alpha \beta}^{i}=\sum_{v} \mathrm{~B}_{(\nu) \alpha \beta} n_{(\nu)}^{i}+w_{\alpha \beta}^{i} \tag{1.5}
\end{equation*}
$$

where

$$
w_{\alpha \beta}^{i} n_{(v) i}=0 \quad, \quad \mathrm{I}_{\alpha \beta}^{i} n_{(\nu) i}=\Omega_{(v) \alpha \beta} .
$$

The quantities $\Omega_{(v) \alpha \beta}$ are called the second fundamental tensors of the subspace. The covariant derivative of $n_{(\sigma)}^{i}$ be given by

$$
\begin{equation*}
n_{(\sigma) ; \beta}^{i}=\mathrm{A}_{(\sigma) \beta}^{\delta} \mathrm{B}_{\delta}^{i}+\sum_{\nu} \nu_{(\sigma) \beta}^{(v)} n_{(\nu)}^{i} \tag{I.6}
\end{equation*}
$$

where $\mathrm{A}_{(\sigma) \beta}^{\delta}$ and $\nu_{(\sigma) \beta}^{(\nu)}$ are defined in [ I$]$.
(*) Nella seduta del 13 maggio 1972.

Let $\lambda^{i}$ be a contravariant vector defining a congruence in $\mathrm{F}_{n}$ which at a point of $\mathrm{F}_{m}$ be given by the equations

$$
\begin{equation*}
\lambda^{i}(u)=t^{\alpha}(u) \mathrm{B}_{\alpha}^{i}+\sum_{v} \mathrm{~d}_{(\nu)} n_{(\nu)}^{i}, \quad(\nu=m+\mathrm{I}, \cdots, n) . \tag{1.7}
\end{equation*}
$$

The components of the derived vector $\frac{\delta \lambda^{i}}{\delta s}$ are given by

$$
\begin{equation*}
\frac{\delta \lambda^{i}}{\delta s}=\mathrm{W}^{\alpha} \mathrm{B}_{\alpha}^{i}+\sum_{v} \mathrm{D}_{(v)} n_{(v)}^{i} \tag{․.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{W}^{\alpha}=\delta t^{\alpha} / \delta s-\sum_{v} \mathrm{~B}_{(\nu) \beta \gamma} \mathrm{M}_{(\nu)}^{\alpha} t^{\gamma} u^{\prime \beta}+\sum_{v} \mathrm{~d}_{(\nu)} \mathrm{A}_{(\nu) \beta}^{\alpha} u^{\prime \beta} \tag{I.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}_{(\nu)}=\mathrm{B}_{(\nu) \alpha \beta} t^{\alpha} u^{\prime \beta}+\frac{\delta \mathrm{d}_{(\nu)}}{\delta s}+\Sigma \mathrm{d}_{(\sigma)} \nu_{(\nu) \beta}^{(\sigma)} u^{\prime \beta} . \tag{1.10}
\end{equation*}
$$

Consider $n-m$ congruences of curves given by linearly independent unit vectors $\mu_{(\sigma)}^{i}(\sigma=m+1, \cdots, n)$ satisfying

$$
\begin{equation*}
\mu_{(\sigma)}^{i}=l_{(\sigma)}^{\alpha} \mathrm{B}_{\alpha}^{i}+\sum_{v} \mathrm{C}_{(\sigma v)} n_{(v)}^{i} \tag{I.II}
\end{equation*}
$$

Let the $n-m$ vectors $\mu_{(\sigma)}^{i}$ with $m$ linearly independent vectors of $\mathrm{F}_{m}$ form a set of $n$ linearly independent vectors of $\mathrm{F}_{n}$. This is possible only when $\left|\mathrm{C}_{(\text {(vv }}\right| \neq 0$. These congruences are called $\mu$-congruences.

## 2. Relative associate curvature of a congruence

Let us define, at each point of $C$, a set of $n-m$ unit vectors $\mathrm{N}_{(\sigma)}^{i}(\sigma=m+\mathrm{I}, \cdots, n)$ with the following properties:
(a) The vector $\mathrm{N}_{(\sigma)}^{i}$, for each $\sigma$, is a linear combination of $\mu_{(\sigma)}^{i}$ and $\mathrm{d} x^{i} / \mathrm{d} s$,
(b) every $\mathrm{N}_{(\sigma)}^{i}$ is orthogonal with respect to $\mathrm{d} x^{i} / \mathrm{d} s$. We have, therefore,

$$
\left\{\begin{array}{l}
\mathrm{N}_{(\sigma)}^{i}=a_{(\sigma)} \frac{\mathrm{d} x^{i}}{\mathrm{~d} s}+b_{(\sigma)} \mu_{(\sigma)}^{i}, \\
g_{i j}\left(x, x^{\prime}\right) \mathrm{N}_{(\sigma)}^{i} \mathrm{~d} x^{j} / \mathrm{d} s=0  \tag{2.I}\\
g_{i j}\left(x, \mathrm{~N}_{(\sigma)}\right) \mathrm{N}_{(\sigma)}^{i} \mathrm{~N}_{(\sigma)}^{j}=\mathrm{I}
\end{array}\right.
$$

The relations in (2.I) give

$$
\left\{\begin{array}{l}
a_{(\sigma)}=-b_{(\sigma)} \mu_{(\sigma)} \quad \text { and }  \tag{2.2}\\
b_{(\sigma)}= \pm \frac{\left(\bar{\Psi}_{(\sigma)}\right)^{1 / 2}}{\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2}}
\end{array}\right.
$$

51.     - RENDICONTI 1972, Vol. LII, fasc. 5.
where

$$
\left\{\begin{array}{l}
\mu_{(\sigma)}=g_{i j}\left(x, x^{\prime}\right) x^{\prime i} \mu_{(\sigma)}^{j}  \tag{2.3}\\
\varphi_{(\sigma)}=g_{i j}\left(x, x^{\prime}\right) \mu_{(\sigma)}^{i} \mu_{(\sigma)}^{j} \\
\bar{\psi}_{(\sigma)}=g_{i j}\left(x, x^{\prime}\right) \mathrm{N}_{(\sigma)}^{i} \mathrm{~N}_{(\sigma)}^{j}
\end{array}\right.
$$

(repeated index $\sigma$ does not denote summation).
From the equations (I.II), (2.1) and (2.2), we get

$$
\begin{equation*}
\mathrm{N}_{(\sigma)}^{i}= \pm \frac{\left[\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right) \mathrm{B}_{\alpha}^{i}+\sum_{v} \mathrm{C}_{(\sigma v)} n_{(\nu)}^{i}\right]\left(\bar{\psi}_{(\sigma)}\right)^{1 / 2}}{\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}()^{1 / 2}\right.} \tag{2.4}
\end{equation*}
$$

As the vectors $\mathrm{B}_{\alpha}^{i}(\alpha=\mathrm{I}, 2, \cdots, m)$ and $n_{(\nu)}^{i}(v=m+\mathrm{I}, \cdots, n)$ are linearly independent, $b_{(v)} \neq 0$ and $\left|\mathrm{C}_{(\sigma v)}\right| \neq 0$. It may be shown that $\mathrm{N}_{(\sigma)}^{i}$ and $\mathrm{B}_{\alpha}^{i}$ are linearly independent. Also the vectors $\mathrm{N}_{(\sigma)}^{i}$ are linearly independent.

Eliminating $n_{(v)}^{i}$ with the help of (I.8) and (2.4), we have

$$
\begin{align*}
\frac{\delta \lambda^{i}}{\delta s} & =\mathrm{W}^{\alpha} \mathrm{B}_{\alpha}^{i}+\sum_{v} \mathrm{D}_{(v)}\left[ \pm \mathrm{N}_{(\sigma)}^{i}\left(\bar{\psi}_{(\sigma)}\right)^{-1 / 2}\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2}-\right.  \tag{2.5}\\
& \left.-\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right) \mathrm{B}_{\alpha}^{i}\right] \overline{\mathrm{C}}_{(\sigma v)}
\end{align*}
$$

where

$$
\overline{\mathrm{C}}_{(o v)}=\frac{\text { cofactor of } \mathrm{C}_{(o v)} \text { in }\left|\mathrm{C}_{(o v)}\right|}{\left|\mathrm{C}_{(o v)}\right|} .
$$

Simplifying (2.5), we obtain

$$
\begin{equation*}
\frac{\delta \lambda^{i}}{\delta s}=\nu^{\alpha} \mathrm{B}_{\alpha}^{i} \pm \sum_{\sigma} \sum_{\nu} \mathrm{D}_{(\nu)} \overline{\mathrm{C}}_{(\sigma v)}\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2}\left(\bar{\Psi}_{(\sigma)}\right)^{-1 / 2} \mathrm{~N}_{(\sigma)}^{i} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu^{\alpha}=\mathrm{W}^{\alpha}-\sum_{\sigma} \sum_{v} \mathrm{D}_{(\nu)}\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right) \overline{\mathrm{C}}_{(\sigma v)} . \tag{2.7}
\end{equation*}
$$

Definition (2.1). The vector $\nu^{\alpha}$ given by the equation (2.7) is called the relative associate curvature vector of the congruence $\lambda^{i}$ (with respect to the $\mu$-congruences) in the direction of the curve C. The scalar $\nu \mathrm{K}$ defined by

$$
\begin{equation*}
\nu \mathrm{K}^{2}=g_{\alpha \beta}\left(u, u^{\prime}\right) \nu^{\alpha} \nu^{\beta} \tag{2.8}
\end{equation*}
$$

is called the relative associate curvature of the congruence $\lambda^{i}$.
Definition (2.2). The vector $\mathrm{W}^{\alpha}$ is called the associate curvature vector of $\lambda^{i}$ and $\mathrm{W}^{\alpha}=0$ is called the $\lambda$-geodesic [4].

ThEOREM (2.1). The relative associate curvature vector of a congruence $\lambda^{i}$ (in the direction of a curve C ) is equal to the vector $\mathrm{W}^{\alpha}$ if the derived vector $\delta \lambda^{i} / \delta s$ of the congruence $\lambda^{i}$ is tangential to the subspace.

Proof: The proof of the Theorem follows from the equations (1.8) and (2.7).

THEOREM (2.2). The necessary and sufficient condition that the derived vector $\delta \lambda^{i} / \delta s$ of $\lambda^{i}$ be equal to its relative associate curvature vector $\nu^{\alpha} B_{\alpha}^{i}$ (both the vectors being considered along the curve C ) is that the first curvature vector of $\lambda^{i}$ (with respect to $\mathrm{F}_{n}$ ) does not lie in a space spanned by the normals.

Proof: If $\delta \lambda^{i} / \delta s$ is not normal to the subspace, $\mathrm{D}_{(v)}=0$ and from (2.6), we get

$$
\begin{equation*}
\delta \lambda^{i} / \delta s=\nu^{\alpha} \mathrm{B}_{\alpha}^{i} . \tag{2.9}
\end{equation*}
$$

Conversely, let (2:9) hold. Since $\mathrm{N}_{(\sigma)}^{i}$ are linearly independent, we get from (2.6),
(2.10) $\quad \sum_{v} \overline{\mathrm{C}}_{(\sigma v)} \mathrm{D}_{(v)}\left(\bar{\Psi}_{(\sigma)}\right)^{-1 / 2}\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2}=0 \quad$ for $\quad \sigma=m+\mathrm{I}, \cdots, n$.

From (2.2), we have

$$
\pm\left(\bar{\Psi}_{(\sigma)}\right)^{-1 / 2}\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2}=\frac{1}{b_{(\sigma)}} \neq 0,
$$

so that the equation (2.10) reduces to

$$
\begin{equation*}
\sum_{v} \overline{\mathrm{C}}_{(o v)} \mathrm{D}_{(v)}=0, \quad \text { for } \quad v=m+\mathrm{I}, \cdots, n \tag{2.1I}
\end{equation*}
$$

and since $\overline{\mathrm{C}}_{(\mathrm{ov})} \neq 0$, we get

$$
\mathrm{D}_{(v)}=0, \quad \text { for } \quad v=m+\mathrm{I}, \cdots, n .
$$

This completes the proof.
From the Theorems (2.1) and (2.2), we have
Corollary (2.1). A necessary and sufficient condition that the three vectors $\delta \lambda^{i} / \delta s, \mathrm{~W}^{\alpha} \mathrm{B}_{\alpha}^{i}$ and $\nu^{\alpha} \mathrm{B}_{\alpha}^{i}$ be equal is that the vector $\delta \lambda^{i} / \delta s$ does not lie in a space spanned by the normals.

In particular, if the congruence $\lambda^{i}$ is tangential to the subspace, $\mathrm{d}_{(v)}=0$, but $t^{\alpha} \neq \mathrm{o}$ and then $\lambda^{i}=\mathrm{B}_{\alpha}^{i} t^{\alpha}$. The equations (2.6) and (2.7) now respectively take the form

$$
\begin{equation*}
\frac{\delta \lambda^{i}}{\delta s}=\nu^{\alpha} \mathrm{B}_{\alpha}^{i} \pm \sum_{\sigma} \sum_{\nu} \overline{\mathrm{C}}_{(\sigma v)} \mathrm{B}_{(\nu) \beta \gamma} t^{\beta} \frac{\mathrm{d} u^{\gamma}}{\mathrm{d} s}\left(\bar{\Psi}_{(\sigma)}\right)^{-1 / 2}\left(\varphi_{(\sigma)}-\mu_{(\sigma)}^{2}\right)^{1 / 2} \mathrm{~N}_{(\sigma)}^{i} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\alpha}=\delta t^{\alpha} / \delta s+\sum_{\sigma} \sum_{v} \mathrm{~B}_{(\nu) \beta \gamma} t^{\beta} \frac{\mathrm{d} u^{\gamma}}{\mathrm{d} s}\left\{\delta_{(\sigma v)} \mathrm{M}_{(\sigma)}^{\alpha}-\overline{\mathrm{C}}_{(\sigma v)}\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right)\right\} . \tag{2.13}
\end{equation*}
$$

If we write

$$
\begin{equation*}
\delta t^{\alpha} / \delta s=\mathrm{d} t^{\alpha} / \mathrm{d} s+\Gamma_{\beta \gamma}^{* \alpha} t^{\beta} \frac{\mathrm{d} u^{\gamma}}{\mathrm{d} s} \tag{2.14}
\end{equation*}
$$

the equations (2.13) can be written as

$$
\begin{equation*}
\nu^{\alpha}=\mathrm{d} t^{\alpha} / \mathrm{d} s+\mathrm{R}_{\beta \gamma}^{\alpha} t^{\beta} u^{\prime \gamma} \tag{2.15}
\end{equation*}
$$

where

$$
\mathrm{R}_{\beta \gamma}^{\alpha}=\Gamma_{\beta \gamma}^{* \alpha}+\sum_{\sigma} \sum_{v} \mathrm{~B}_{(\nu) \beta \gamma}\left\{\delta_{(\sigma v)} \mathrm{M}_{(\sigma)}^{\alpha}-\overline{\mathrm{C}}_{(\sigma v)}\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right)\right\} .
$$

The quantities $R_{\beta \gamma}^{\alpha}$ are called the relative connection parameters of the subspace [5].

Moreover, in this particular case, the Theorems (2.1) and (2.2) run as follows:

Theorem (2.I a). A sufficient condition that the relative associate curvature vector $\nu^{\alpha}$ of the vector-field $\lambda^{i}$ (tangential to $\mathrm{F}_{m}$ ) along C be equal to its associate curvature vector $\delta t^{\alpha} / \delta s$ is that the vector-field $t^{\alpha}$ is conjugate with respect to C .

Theorem (2.2 a). A necessary and sufficient condition that the derived vector $\delta \lambda^{i} / \delta s$ of the tangential vector-field $\lambda^{i}$ be equal to the relative associate curvature vector $\nu^{\alpha} \mathrm{B}_{\alpha}^{i}$ (both the vectors are considered along the same curve C ) is that the vector-field $t^{\alpha}$ is conjugate with respect to C .

## 3. $\lambda$-Pseudogeodesics

A curve of the subspace is said to be a $\lambda$-psuedogeodesic (with respect to $\mu$-congruences) if at each of its points the relative associate curvature of the congruence $\lambda^{i}$ vanishes identically.

For such a $\lambda$-pseudogeodesic, we have $\nu^{\alpha}=0$. Its equation, therefore, is given by

$$
\begin{equation*}
\mathrm{W}^{\alpha}-\sum_{\sigma} \sum_{\nu} \mathrm{D}_{(\nu)}\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right) \overline{\mathrm{C}}_{(\sigma v)}=0 . \tag{3.1}
\end{equation*}
$$

Theorem (3.1). A $\lambda$-pseudogeodesic relative to the $\mu$-congruences is a $\lambda$-geodesic if the first curvature vector of $\lambda^{i}\left(\right.$ with respect to $\left.\mathrm{F}_{n}\right)$ does not lie in a variety spanned by the normals.

Proof: From the equation (3.1), the definition (2.2) and the condition $\mathrm{D}_{(\nu)}=\mathrm{o}$, the proof of the Theorem follows.

If, in particular, $\lambda^{i}=x^{\prime i}$, the equation (3.I) then takes the form

$$
\begin{equation*}
p^{\alpha}+\sum_{\sigma} \sum_{v} \mathrm{~B}_{(v) \beta \gamma} \frac{\mathrm{d} u^{\beta}}{\mathrm{d} s} \frac{\mathrm{~d} u^{\gamma}}{\mathrm{d} s}\left\{\delta_{(\sigma v)} \mathrm{M}_{(\sigma)}^{\alpha}-\overline{\mathrm{C}}_{(\sigma v)}\left(l_{(\sigma)}^{\alpha}-\mu_{(\sigma)} \frac{\mathrm{d} u^{\alpha}}{\mathrm{d} s}\right)\right\}=0 \tag{3.2}
\end{equation*}
$$

which is the equation of the pseudogeodesic of the subspace. In a hypersurface, the equation (3.2) reduces to the equation of a union curve (relative to $\mu$-congruence) [5]. Hence the pseudogeodesics of the hypersurface are the union curves.

When $\lambda^{i}=x^{\prime i}$, the $\lambda$-pseudogeodesics are the pseudogeodesics which, in view of the equation (2.15), are given by the equations

$$
\begin{equation*}
p^{\alpha}+\mathrm{R}_{\beta \gamma}^{\alpha} \frac{\mathrm{d} u^{\beta}}{\mathrm{d} s} \frac{\mathrm{~d} u^{\gamma}}{\mathrm{d} s}=\mathrm{o} . \tag{3.3}
\end{equation*}
$$

As the geodesics of the subspace with the equations

$$
p^{\alpha}+\Gamma_{\beta \gamma}^{* \alpha} \frac{\mathrm{~d} u^{\beta}}{\mathrm{d} s} \frac{\mathrm{~d} u^{\gamma}}{\mathrm{d} s}=\mathrm{o}
$$

are the auto-parallel curves, the pseudogeodesics are considered as the autorelative parallel curves of the subspace. But it may be remarked that the $\lambda$-pseudogeodesics are not auto-relative parallel curves of the Finsler subspace.

The Author is grateful to Prof. K. B. Lal for his help in the preparation of this paper.

## References

[1] Eliopoulos H. A., Subspaces of a generalized metric space, «Canad. J. Math.», II, 235255 (1959).
[2] Pan T. K., On the generalization of the first curvature of a curve in a hypersurface of a Riemannian space, "Canad. J. Math.》, 6 (2), 210-216 (1954).
[3] Pan T. K., Relative first curvature and relative parallelism in a subspace of a Riemannian space, "Uni. Nac. Tacuman, Rev.》, AiI, 3-9 (1957).
[4] Prasad C. M., Union congruence in a subspace of a Finsler space, "Annali di Mat. pura ed Appl.», IV, 78, 143-154 (197r).
[5] Singh U. P., Relative parallelism and pseudogeodesics, «Ph. D. Thesis», Gorakhpur University (1967).

