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Analisi funzionale. — Remarks on fixed points. Nota di StMEON
REIcH, presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Si fanno alcune osservazioni sui Teoremi relativi ai punti fissi e si sta-
biliscono nuove proprieta sulle trasformazioni non espansive in certi spazi di Banach.

o. INTRODUCTION

This Note contains miscellaneous remarks on fixed points in metric and
Banach spaces. Emphasis is laid on non-expansive mappings. The main
results are Theorems 1.3, 2.1 and 4.3.

1. KANNAN’S FUNCTIONS

Kannan [17, Theorem 2] has established the following result.
THEOREM 1.A. Zet (M, d) be a compact metric space and let a continmons
T:M—->M satisfy

(1.1) d(Tx, Ty) < L [d(x, T2) + d(y , Tv)

SJor all x and vy in M. Suppose that

(1.2) d(x, Tx) is not constant on any closed subset of M which contains
more than one point and is invariant under T.

Then T has a fixed point.

In view of Kannan’s fixed point Theorem [15, p. 73; 16, p. 406], it is
somewhat surprising that T is assumed to be continuous. Indeed this assump-
tion is redundant.

PROPOSITION 1.1.  Theorem 1.A remains valid when the continuity requi-
rement imposed on T is dropped.

Proof. Let XCM be minimal with respect to being non-empty, closed
and invariant under T. If X contains more than one point, there are w and
zin X with » =d(w,Tw) <d(z,Ts). Put A={xreX:d(x,Tx)<r}
and let Y be the closure of T(A). If y € Y, then y is the limit of a sequence
{Txn} with d(x, , Txn) <7 for each n Since d(y,Ty) <d(y,Tx,) +

+ = d(x,, ,Txn) + d(y Ty) it follows that d(y, Ty) <». Thus YCA and
T(Y)CY. This is a contradiction because Y is a proper subset of X.

(*) Nella seduta del 13 maggio 1972.
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Condition (1.2) cannot be omitted [30, p. 10], but we can get rid of (1.2)
by sharpening (1.1).

PROPOSITION 1.2. Let (M, d) be a compact metric space and let'T : M — M.
If T satisfies

(1.3) d(Tx,Ty) < > [d(x, Tx)+d (v, Ty)]
Jor all x, y € M with Tx ==Ty, then it has a fixed point.

Proof. Let m =inf {d(x,Tx):x€M}. Choose a sequence {x,} such that
d(x,,Tx,)—m. A subsequence {¥,}C{Tx,} converges to a certain y € M.

Since d(y,Ty)<d (v, y)+d(Tx, , TH<d(y, y)+—d (%, T+ d(y,Ty),

we obtain d(y,Ty) < 2d(y,v,) +d(x;,,Tx;). Thus m =d(y,Ty). Were
m positive, the contradiction & (Ty,sz) <d(y,Ty) would occur.

Sometimes (1.1) suffices to guarantee the existence of a fixed point.

Recall that a non-empty bounded convex subset K of a normed linear
space E is said to have normal structure if for each convex subset S of K
which contains more than one point, there is a point x € S which is non-diame-
tral (that is, sup {||lx — | :¥ €S} is strictly less than the diameter of S).

Although the argument presented in [31, Section I.iii] can be adapted
to yield a proof of our next result, we prefer to use a variant of an idea which
appears in [4, p. 290] and [12, p. 12006].

THEOREM 1.3. Let C, a non-empty weakly compact convex subset of a
normed linear space, possess normal structure. If T :C— C satisfies

(1.4) ITe — Tyl < [lx— Tzl + |y — Tyl

Jor all x and y in C, then it has a fixed point.

Proof. Let ¢(x)=|x—Tx|,¢g=inf {(x):2x€C},r>gq and
A={xeC:t(x)<r}. If y belongs to the convex hull of T(A) and z€C,
then ||z —Tz| <2|lz—y]| +». It follows that the closed convex hull
of T(A) is a subset of A. Hence Q = {x €C:#(x) = m} is not void. Let K
be the convex hull of T (Q). K is contained in Q and invariant under T.
Each of its points is diametral (cf. [17, Theorem 5]). Thus K is a singleton.
This, completes the proof.

This result answers completely a question we raised in [30, p. 11] (a
partial answer appears in [3I, Section 1.iii]). It shows that the continuity
assumption in [18, Theorem 3] is superfluous.

2. ACCRETIVE OPERATORS

Let Q be a non-empty subset of a real Banach space E. We shall denote
the boundary of Q by bdy(Q), its interior by int(Q), its closure by cl(Q)
and its convex hull by co(Q). bdg(Q) will_stand for the set of bounding
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points of Q, that is {x € Q : x does not belong to the core of Q}. If x€Q
we put (after Halpern [13, p. 87]) Io(x)={2€E:z2=x+¢c(y —x) for
some y €Q and ¢>o0}. If x€bdg(Q), then Io(x) = E. If Q is convex
with non-empty interior we choose for each y € bdy(Q) a support functional
f, This functional satisfies (x,f,) <(y,f,) and {(z,f,) <(v,f,) where
x€Q and z€int (Q).

Let C be a non-empty closed convex subset of E. We shall be interested
in three conditions which may be satisfied by a mapping T :C — E.

(2.1) Tyelc(y) for each y € bdg(C);

(2.2) (Ty,f,) <<(yv.f,) for each y € bdy(C);

(2.3) For some we€int(C) Ty—w==m(y—w) forall ye€bdy(C)
and m > 1.

In the last two conditions we assume of course that int(C)==g.
(2.1) = (2.2) = (2.3), but the implications in the other direction do not hold
in general.

A function A : C — E is said to be accretive (see for example [19, p. 141])
if for each positive #

(2.4) lx+7rAx —y —rAy|| = |lx — |l

for all x and  in C. It will be called strongly accretive if for each positive
7 and x €C there is a number Z(x,7) <1 such that

(25) k(@ 7) ||z +rAx —y —rAy|| > ||lx — |

for each y€C. A mapping T:C —E is said to be non-expansive if

(2.6) 1Tx — Ty | <llx —¥|

forallx,y € C. Ttis called (after Kirk [21, p. 567]) a generalized contraction
if for each x €C there is a number a(x) < 1 such that

(2.7) 1Tz — Ty || < a(x) [|lx — |

for all y€C. Let I denote the identity function. If T is non-expansive
(a generalized contraction), then I —T 1is accretive (strongly accretive).
If for some £<1 T satisfies

(2.8) T —Tyl| < £llx—ll
for all x and » in C, it is called a strict contraction.

THEOREM 2.1. Let C be a non-empty bounded closed comvex subset of a
real Banach space E. Let a Lipschitzian T : C — E satisfy either (2.1) or (2.2).
If 1 —T is accretive (strongly accretive) and C has the fixed point property for
non-expansive functions (generalized comtractions), then T has a fixed point.
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Proof. Choose a positive 7 so that #T may be a strict contraction where
t=7[(r+1). B=[I4»{I—T)]is single-valued and non-expansive (a
generalized contraction) on its domain D. Let z€C and S = ¢T - (1—9%)z.
If v =x+ ¢ (y —x) where x and  are in C and ¢ > o, then tv+ (1 —8z=
=x+ b(u—x)where b =1+ tc—¢ and bu = tcy - (1—2)z Ify € bdy(C)
and (v, £,) < (v, £,), then (o + (1 —Hz /) < 2(y,f,) + (1 — ) (3 £.) —
=<(¥,/,). Thus S:C — E satisfies (2.1) or (2.2), as the case may be. S has
a fixed point by [33, Section 2] (or by [32, Theorems 3.3 and 3.5]). It follows
that CCD. The fixed point of B:C —C is also a fixed point for T.

COROLLARY 2.2, Let C, a non-empty weakly (weak star) compact convex
subset of a real (conjugate) Banach space E, possess normal structure. If a
non-expansive T : C — E satisfies either (2.1) or (2.2), then it has a fixed point.

COROLLARY 2.3. Let C be a non-empty weakly (weak star) compact convex
subset of a real (comjugate) Banach space E. If a generalized contraction
T:C —E satisfies either (2.1) or (2.2), then it has a fixed point.

Those parts ‘of Corollaries 2.2 and 2.3 which deal with condition (2.1)
were established by a different, more direct method in [34]. The weak (weak
star) lower-semicontinuity of the (conjugate) norm turned out to be useful there.

Theorem 2.1 and its corollaries improve upon recent results of Kirk
[20, p. 821], [22, pp. 91 and 92] and Assad—Kirk [1, Theorem 3]. They
assume that the image of bdy (C) under T is contained in C.

Sometimes we can replace (2.2) by (2.3). Here is a simple example.
Recall that a function V : C — E is said to be strongly compact if x, -« in C
implies Vx, — Vzx.

PROPOSITION 2.4. Let C be a nom-empty bounded closed convex subset
of a Hilbert space H. Let T:H —H satisfy either (2.1) or (2.3) on C. If
T =U+YV where U is Lipschitzian, 1 —U is accretive and V. is strongly
compact, then T has a fixed point.

We omit the details.

This Proposition improves upon a result due to Kluge [23, p. 321], who
assumed that U (x) 4 V(3) belongs to C for all x and y in C.

It might be of interest to determine- whether Theorem 2.1 remains valid
‘when '(2.2) is replaced by (2.3).
We take this opportunity to remark that the following two results are

true. They can be inferred from [33, Section 2] and [14, Theorem 4.1]
, respectively.

. PROPOSITION 2.5. Zez C be a non-empty closed convex subset of a Banach
space E. If a strict contraction T : C — E satisfies (2.1), then it has a fixed point.

PROPOSITION 2.6. Let C be a non-empty closed comvex bounded subset of
a strictly comvex reflexive Banach space E. If an isometry T :C — E satisfies

(2.9) Ty € cl(Ic () Jfor eack y € bdg ©),
then it has a fixed point.
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Proposition 2.6 is an extension of [7, Theorem 7.1] which in turn improves
upon the result in [6].

An elegant proof of [14, Theorem 4.1] can be obtained by adapting
Fan’s arguments in [8, p. 309] and [9, p. 235].

3. SET-VALUED FUNCTIONS

As an example of a possible fixed point theorem for set-valued non-expan-
sive functions, we present an improvement of [32, Theorem 5.4].

Let (CC (E), H) denote the space of all non-empty compact convex sub-
sets of a Banach space E endowed with the Hausdorff metric H. Let SCE
be non-empty. A continuous F:S —CC(E) is said to be.compact if F(B)
is contained in a compact subset of E for each bounded subset B of S,
non-expansive if H(F(x),F(y) <||lx —y| for all x, ye€S, strongly
compact if x, —x in S implies F(x,) - F(x) in (CC(E),H). If U:SXS —
—~CC(E), then the function F:S-—>CC(E) defined by F(x)=U (x,x)
for all x €S will be called the function associated with U.

A Banach space E is said to satisfy Opial’s condition [27, p. 592] if
x,—~x in E implies that liminf || %, — || > liminf ||x, — x|| for all y==x.
A Hilbert space satisfies this condition.

PROPOSITION 3.1. Let C be a non-empty weakly compact convex subset
of a Banach space E which satisfies Opial’s condition, and let F :C — E be
associated with some U : EXC —CC(E) where for a fixed y€C U(-,y) is
non-expansive on B, and for a fixed x € E U(x, -) is strongly compact. If F
satisfies - either

(3.1 FNIe =2 for cach yebdg(C),
or
(3.2)  For some weint(C) z—w==m(y—w) for all ycbdy(C),
z€F(y) and m > 1,
then it has a fixed point.
Proof. F enjoys the following pfopefty:
(3.3) If {x,}CC, x,~x and x,—w,—>2z where w,€F(x,),

then zex — F(x).

Indeed, if the assumptions of (3.3) hold, then for each » we can find
v,€U(x,x,) such that |w,—y,||<|x,—x]|. Since U(x,:) is com-
pact and strongly compact on C, we may assume that y,->y for some
yeU,x). Now |x,—z—y| <z, —w,— 2l + 3, — 5| + |2, — ],
so that x =2+ y. An appeal to the results of [32] completes the proof.
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If E is a Hilbert space éc = bg (cf. [26, p. 932]) and U may be assumed
to be defined only on CXC. Here &y (B) =inf{r >0:B can be covered
by a finite number of balls with centers in M and radius »} where BC MCE
and B is bounded, is the ‘“ball measure of non-compactness .

This result extends the Theorems of Markin [25, p. 639] and Lami Dozo
[24, p. 44]. It is also a partial extension of the Theorems in [24, p. 27]
and [1, Theorems 2 and 4]. V

4. ITERATIONS

Let E be a real Banach space, E* its dual and J: E — E* a normalized
duality mapping [5, p. 50]. The norm of E is uniformly Gateaux differentiable
if and only if E” is weak star uniformly rotund if and only if J is unique and
uniformly continuous on bounded subsets of E from the strong topology of
E to the weak star topology of E* (cf. [2, p. 9o] and [3, p- 303]).

PROPOSITION 4.1. Lez E be areal Banach space, T : E — E a non-expansive
mapping and S = 1—T. If E* is weak star uniformly rotund, then cl(S (E))
is convex.

Progf. We need only show that co (S (E))Ccl (S(E)). Let x € co (S(E)).
Then x = ), p,y; where p, >0, Zpl- =1 and y,€S(E) for each 7. For
7=1 =1

each positive # there are unique points x, and y,, in E which satisfy
% =3Sx+1tx, and ¥, =Sy, + ¥, (SVie —Sx, J(¥;,s — %)) = 0, because

T is non-expansive. This leads to #2 2‘1 pille,— v B < _S:{ Pi{x—y;,
1= 1=

J(tx,—ty;,)) — J (¢x,)).  The last inequality, combined with the uniform
continuity of J, implies that #x, — 0 as # — o because {y;,,:#> 0} is bounded
for each z. This completes the proof.

In case E is a Hilbert space, or more generally a Banach space with
a uniformly rotund dual, this result is due to Pazy [28, p. 238], [29]. In
fact, it is possible to prove Proposition 4.1 by adapting Pazy’s arguments
in [28]. The proof presented above was inspired by Gossez [11, p. 77].

Uniformly rotund Banach spaces satisfy the following condition (ef.

[10, p. 555]):
(4.1) For any convex set K, every sequence {x,} in K satisfying
lim ||, = inf {||x] : # € K} converges.
Let Q be a non-empty closed subset of a Banach space E which satisfies
(4-1). cl(co(Q)) contains a unique element of least norm. We shall say (after

Pazy [28, p. 237]) that Q has the minimum property if this element belongs

to Q.
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Let N denote the set of all non-negative integers. Let{c,:7# €N} be
a sequence of real numbers which satisfy

(4.2) 0<¢, <1 for all neN;
(4-3) e diverges.
=0

The following proposition is Theorem 2 of [335].

PROPOSITION 4.2. Let x%g€C, a closed convex subset of a Banach space
E which satisfies (4.1),1et T :C —C be non-expansive and let the sequence
{x,:n €N} be defined by

(4.4) Xup1 = (I —¢,) %, + ¢, Tx, , m€N.

If cI(S(C)) has the minimum property, then x,.1la,—~—v where v is the
element of least norm in cl(S(C)) and a, = Y, ¢;, n €N.
7=0

Combining the last two Propositions we obtain an improvement of
[28, Corollary 2].

THEOREM 4.3. Let xy € E, a Banach space whose norm is uniformly Géteaux
differentiable, let T : E — E be non-expansive and let {x,} be defined by (4.4).
If E satisfies (4.1), then x,i1|a, — —v where v is the element of least norm in

ol (S(E)).

If, in addition, E is uniformly rotund, it follows that

) 0€S(E) if and only if {x,} is bounded for every x, € E and
every sequence {c,};

(i1) o €cl(S(E)) if and only if lim ||x,.1[//a, > 0 for every x,€ E
and every sequence {¢,};

(iii) o € cl (S(E)), but 0 ¢ S(E) if and only if {x,} is unbounded,
but x,i/a, —o0 for every xy€ E and every sequence {c,}.
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