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Analisi funzionale. — A4 Characterization of Smooth a—~Lipschitz
Mappings on a Hilbert Space ©. Nota di GeorGE R. SELL, presen-
tata “ dal Socio G. SANSONE.

R1ASSUNTO. — Un esempio di trasformazione e~Lipschitziana ¢ dato da T = A + B
dove A & compatta e B & Lipschitziano. In questo articolo si mostra che se T & una trasfor-
mazione o-Lipschitziana regolare su uno spazio di Hilbert, allora vale anche il viceversa.
Inoltre, cio che & pit importante, mostriamo che il coefficiente di Lipschitz per B pud essere
scelto arbitrariamente prossimo all’ a-modulo di T.

[. INTRODUCTION AND STATEMENT OF MAIN RESULT

In his book [5], K. Kuratowski introduced the concept of the a-measure
of a bounded set S in a metric space X. Precisely, «(S) is defined to be the
infimum over all ¢ > o such that S can be covered by a finite number of
sets, each of diameter less than or equal to . A mapping T : X — X is said
to be an a-Lipschitz mapping if T maps bounded sets into bounded sets
and if there is a real number 2,0 < £ < oo, such that

(1) «(T(S)) < ka(S)

for all bounded sets SC X. The infimum over all 4 that satisfy (1) is said
to be the a-module of T, and we shall denote this by ar.

If T is a compact operator, then it is e—Lipschitz and apr = o. If T is
a Lipschitz continuous operator, then it is a—Lipschitz and ar < &p, where Ar
denotes the Lipschitz coefficient of T, that is, 4r is the infimum over all %
that satisfy

p(Tx , Ty) < ko (x, »)

for all x,y€X. (Here we use p to denote the metric on X). If X is
also a linear space, then the sum of two a—Lipschitz mappings T = R 4+ S
is a—Lipschitz, and ar < ar +as. In particu]ar, if T=R + S where R
is compact and S is Lipschitz continuous, then T is «-Lipschitz and
oy = og < Ag.

The purpose of this paper is to prove a converse of the last example.
However, before stating our result let us review briefly some of the uses of
a~Lipschitz mappings in the literature. We do this in order to motivate an
inequality which will be the main objective of our argument.

(*) This work was done while the Author was visiting the Istituto Matematico del-
I'Universita di Firenze under the auspices of the Italian Research Council (C.N.R.). Partial
support for this research was also given by NSF Grant No. GP-27275.

(*¥*) Nella seduta dell’8 aprile 1972z.
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The first result for a~Lipschitz mappings seems to be due to G. Darbo [2].
He proved the following result.

THEOREM D. Zet T :A— A be a continuous o—Lipschitz mapping defined
on a closed bounded convex set in a Banach space X. If

ar < 1,
then T has a fixed point.
In the same year M. A. Krasnosel’skii [4] published a proof of the
following fixed point Theorem.

THEOREM K. LZLet R be a compact continuous operator and let S be a
Lipschitz continuous operator defined on a closed bounded convex .set A in a
Banack space X. If

(i) Rx 4+ SyeA- whenever x,y€N, and
(i) ks <1,
then the mapping T =R + S has a fixed point in A.

Since, in Theorem K, one has ar < 45, the following generalization

of Theorem K is valid because it is a corollary of Theorem D.

THEOREM DK. 7n Theorem K one can replace condition (i) with
(i) Tx = Rx +Sx €A whenever x€A.

We will have more to say about these fixed point Theorems shortly,
but let us now state the main result of this paper.

LocAL DECOMPOSITION THEOREM. Zez T :U —H be a smooth a—Lipschitz
mapping defined on an open set U in a Hilbert space H. Then for every xy € U
and every e > 0O there is a 8 > 0, a compact linear operator R and a Lipschitz
continuous operator S such that

(2) T=R-+S

in By(xg), the d-neighborhood of x,, and moreover, the Lipschitz coefficient
ks for S satisfies

(3) ar < bs < oar + 3e.

We shall define the smoothness concept we require in the next section.
Before doing that though, it should be emphasized that the important con-
clusion in this Theorem is Ineq. (3). This inequality implies, for example,
that if «r <1 then for smooth o-Lipschitz mappings one can choose S
so that 45 < 1. In other words at least ‘“locally ” Theorem D and Theorem
DK are the same. But, to re-emphasize, our result is only local. It is an
interesting, but unsolved, problem to determine whether the Local Decom-
position Theorem can be extended to an arbitrary closed bounded convex
set A.

In Sections VI and VII we shall study the theory of a bounded linear
mapping L on a Hilbert space. In these sections we shall present a formula
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for computing o, in terms of the spectral properties of L. This formula not
only plays a crucial role in our proof of the Local Decomposition Theorem,
but seems to be interesting in itself.

II. SMOOTH MAPPINGS

Let T:U — X be defined on an open set U in a Banach space X. We
shall say that T is smooth if for every x,€U and every ¢ > o there is

a 3 > o such that
Tax = Lx + Nx

in Bs(x,) where

(i) L is a bounded linear mapping on X,
(i) Txy = Nx,, and
(i) Ny —Nyl| <cllx —y| in Bs(x).
The linear mapping L is, of course, the derivatigle of T at x,. Also note that

any smooth mapping on U has a continuous derivative on U, and that any
C’~function on U is smooth.

ITI. AN IMPORTANT PROPERTY OF THE o—INDEX

Some of the properties of the a—index have already been noted in the
Introduction. We will also make use of the following property:

Let M be an infinite dimensional subspace of a Banach space X and
let B, denote a ball of radius » in M. Then «(B,) = 2». Furthermore,
if B is any bounded set in M with B, C B C B,, then

27 =a(B,)<a(B)<a(B,) = 25.

See [3] for a proof of these assertions.

IV. REDUCTION TO A LINEAR PROBLEM

It follows immediately from the definition that a smooth mapping is
Lipschitz continuous. If T=L -+N in Bgs(x,) where L is a bounded linear
mapping, Txy = Nxy and [|[Nx — Ny|| < ¢||x — »]|, one then has

o, < oy + €.

If one can show that the linear part L can be decomposed into L = A + B
where A is compact and where

ke =|B||< o + ¢,

then by setting R = A and S= B 4+ N we will have established Ineq. (3)
and thus completed the proof of the Theorem. Indeed,

ar=os < ks < ||B|| +e<ay +2e<ar -3¢,
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We shall now restrict our attention to the case where X is a Hilbert
space H. The first step in our argument will involve an examination of the
case where L is a positive self-adjoint operator, but before looking at this
it will be convenient to review some of the spectral theory for self-adjoint
operators.

V. A REVIEW OF SPECTRAL THEORY

Let L: H—H be a bounded positive self-adjoint operator on a Hilbert
space H. That is, o <L or in terms of the inner product o < Lz, x) for
all x € H. Then there exists a unique family of orthogonal projections E,
and corresponding ranges M, , — oo <A < oo, such that

(i) Ex=o0 for A<o,
(i) E,=1 for a>|L|,
(iv) E, is continuous from the right in the strong topology, and

[«

Pl
—0 0~

Let o (L) denote the spectrum of L. We recall that if A is an
isolated point of o (L), then A is an eigenvalue. The next three lemmas

are direct consequences of the Spectral Theorem, cf. 7] and we omit the
proofs.

LEMMA 1. Let © be any nonnegative number with the property that
(v, +o0)N o (L) contains at most a finite number of points N and that for
each of these the null space w(\l — L) is finite dimensional. Let

+ 00 <t
E ‘
A=J AdE,  and B = | \dE,.
P —00
Then L = A + B where A is compact and ||B|| < x. Furthermore if for any

6 <, the set [0, 7] o (L) contains an infinite number of points, then there

is an infinite dimensional subspace M = M (o) of H with the property that
ol <L on M.

LEMMA 2. Let « satisfy the hypotheses of Lemma 1.and let A and B be
determined accordingly. Then

o, = oy < || BJ| < =.

LEMMA 3. L is compact if and only if every nonzero \ € o (L) zs an isolated
point of o(L) and w(\l — L) is finite dimensional.

49. — RENDICONTI 1972, Vol. LII, fasc. 5.
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VI. BOUNDED POSITIVE SELF—ADJOINT OPERATORS

The primary purpose of this section is to compute ¢, in terms of the
spectrum of L, when L is a bounded positive self-adjoint operator on a Hilbert
space H. At the same time we shall present the decomposition of L prescribed
in Section IV.

Let L:H—H be bounded positive self-adjoint operator. Define B,
and B, as follows:

By =sup{r€c(@):x is an accumulation point of o(L)}
Be =max {A€c(L): 1 is isolated and n (A —L) is infinite dimen-
sional }

where we allow the values — oo if either of the above sets are empty. Let
= B (L) =max {0, B, B}

LemMMA 4. Let L:H —H be a bounded positive self-adjoint operator
on a Hilbert space H. Then o, = B (L). Furthermore for every > 0 there
is a decomposition 1. = A + B where A s compact and ||B|| < a1, + €.

Proof. We shall distinguish between four cases. In three of these cases
we will see that B can be chosen independent of ¢ and that | B| = «.

Case 1. B =0,>0 and for every e > o0 there are countably many
eigenvalues in the interval [B,, B; + ¢].

In this case we apply Lemma 1 with t =, +¢ and ¢ = p;. Since
By < By, it follows that the hypotheses of Lemma 1 are satisfied for this
choice of v and 6. Let A, B and M be determined by Lemma 1. Then A
is' compact and

@ Br<sup{rec(L):A<B +e}=|B|<p +¢.

Since B; I <L on M it follows that B, S CL(S), where S denotes the unit
ball in M. Since M is infinite dimensional we have 2 B; < « (L (S)), or
B; < ay. By letting €—o, it follows from Lemma 2 and Ineq. (4) that
a, = Py

Case 2. B = ;>0 and (B;,o0)N o(L) contains at most a finite number
of points.

In this case we apply Lemma 1 with v = B; and ¢ being any real number
with 0 < o < 8;. Since By < By, it follows that the hypotheses of Lemma I
are satisfied for this choice of T and 6. Let A, B and M be determined
accordingly. Then A is compact and

(5) [Bll =sup{rec@):r<pi}=pr.

Since M is infinite dimensional and 6I <L on M, it follows, as in Case 1,
that 6 < oy,. By letting 6 — B, it then follows from Lemma 2 and Eqn. (5)
that A, = Bl .
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Case 3. B =Py >o0.

In this case we apply the first part of Lemma 1 with v = f,.  Since
1 < B2, the hypotheses of Lemma 1 are satisfied. With A and B given by
Lemma 1 we see that A is compact and || B|| = B,. Furthermore, L = B, I
on the infinite dimensional space M = n (B, I —L). It follows then, from
the same argument used in Case 1, that B, < «r; and thus Lemma 2 implies
that By = ay,.

Case 4. B =o.
In this case it follows from Lemma 3 that L is compact. Hence
a, =0 =10. Now set L=A and B = o, to complete the proof.

VII. GENERAL BOUNDED LINEAR OPERATORS

Now assume that L is an arbitrary bounded linear operator on the Hilbert
space H. Then there is a polar decomposition L = RU, where R is a positive
self-adjoint operator and U is a unitary operator, cf. [6] and [7]. Even though
this decomposition may not be unique, the number B(R) is well-defined and

depends on L and not on the decomposition, since R is the positive square-
root of LL*

LEMMA 5. ZLet L:H —H be a bounded linear operator and let 1. = RU
be a polar decomposition of L. Then oy = ag = B (R). Furthermore, for
every € >0 there is a decomposition L = A + B, where A is compact and
Bl <o +e.

Proof: We apply Lemma 4 to R so that R = P + Q where P is compact
and [|Q|] < @r +¢. Since U is unitary it is clear that o, = ag. Furthermore
it follows from Lemma 4 that g = 8 (R). Now set A = PU and B = QU.
Then L = A + B where A is compact and

Bl =[1QI <o +<.

This completes the proof of Lemma § as well as the proof of the Local
Decomposition Theorem.

VIII. CONCLUDING REMARKS

As we have seen, the problem of decomposing a given operator in order
to establish Ineq. (3) reduces to the study of linear mappings when the given
operator is smooth. Other Authors have studied linear a~Lipschitz mappings
on a Banach space X.

A. Ambrosetti [1] has shown that if L: X — X is a linear a—Lipschitz
mapping on a Banach space X, then for every € > o one can write L=A + B,
where A has finite dimensional range and 7g, the spectral radius of B,

satisfies
rg <o +e.
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This result still leaves open the question of estimating the Lipschitz coefficient
|B]], which still may be much longer than «.

Part of Lemmas 4 and g also follow from a Theorem of J. R. L. Webb [8],
which gives a characterization of linear a—Lipschitz mappings with range
in a Hilbert space. However, Webb’s Theorem does not give a method for
computing o, in terms of spectral properties when L is linear.

Our theory leaves open a number of interesting unsolved problems for
further research.

1) Can the main result be extended to Banach spaces or Frechét
spaces? 4

2) The Local Decomposition Theorem depends on the base point .
Can one choose the decomposition so that it varies continuously with x,

and perhaps more importantly, can one extend the local result to a global
result?
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