ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

OLUSOLA AKINYELE

Banach algebras of the type $l_1(S, A)$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.5, p. 637–643. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_5_637_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Banach algebras of the type $l_1(S, A)$. Nota di Olusola Akinyele, presentata (*) dal Corrisp. G. Zappa.

RIASSUNTO. — Sia G un gruppo Abeliano localmente compatto e A un'algebra di Banach commutativa. Hausner [3] e Johnson [6] hanno discusso gli omomorfismi complessi dell'algebra di Banach B'(G, A), costituita da tutte le funzioni di Bochner integrabili definite in un gruppo Abeliano localmente compatto avente valori in A. È noto che lo spazio di tutti gli ideali regolari massimi di B'(G, A) è omeomorfo nella topologia del prodotto al prodotto Cartesiano di \mathfrak{M} (A) e \hat{G} , dove \mathfrak{M} (A) indica lo spazio di tutti gli ideali regolari massimi di A e \hat{G} è il gruppo di caratteri di G. Johnson ha dimostrato che nel caso in cui A stesso è l'algebra di gruppo $L_1(H)$ di un gruppo localmente compatto H, $B^1(G, L_1(H))$ è isometrico e isomorfo all'algebra di gruppo $L_1(G \times H)$. Lo scopo del presente lavoro è di generalizzare questi risultati all'algebra di Banach $l_1(S, A)$ discussa in [1], dove S è un semigruppo commutativo discreto.

§ 1. Introduction

Let G be a locally compact Abelian group and A a commutative Banach algebra. Hausner [3] and Johnson [6] have discussed the complex homomorphisms of the Banach algebra $B^1(G,A)$, consisting of all of Bochner integrable functions defined on a locally compact Abelian group with values in A. It is known [3,6] that the space of all regular maximal ideals of $B^1(G,A)$ is homeomorphic with the Carte ian product of $\mathfrak{M}(A)$ and \hat{G} in the product topology, where $\mathfrak{M}(A)$ denotes the space of all regular maximal ideals of A and \hat{G} is the group of characters of G. Johnson [6] has shown that in the case where A itself is the group algebra $L_1(H)$ of a locally compact group H, $B^1(G,L_1(H))$ is isometric and isomorphic to the group algebra $L_1(G\times H)$.

The aim of this paper is to generalise the above results to the case where G is a semigroup. Throughout this paper S will be a discrete commutative semigroup and A a commutative Banach algebra. In [1], the Author has studied the convolution algebra $l_1(S,A)$, which specializes to $l_1(S)$ of Hewitt and Zuckerman [4], if A is taken to be the complex numbers. In that paper, Theorem 3.3 and Corollary 3.4 show that the maximal regular ideal space of $l_1(S,A)$ can be identified with an ordered pair (M,χ) , where M is a maximal regular ideal of the Banach algebra A and χ is a semicharacter of S, just as in the case where S is a group, that is, $B^1(G,A)$ [3, 6]. This identification is given by the formula:

$$J_{(M,\chi)}(f) = \sum_{x \in S} \varphi_M(f(x)) \chi(x), \qquad f \in l_1(S, A),$$

(*) Nella seduta del 13 maggio 1972.

where φ_M is a complex-valued homomorphism of A. In section 2, we show that the identification obtained in [1] is in fact a homeomorphism. In section 3, we show that in the case where A is an l_1 -algebra, that is, if $A = l_1(G)$, then $l_1(S, l_1(G))$ is isometric and isomorphic with the l_1 -algebra $l_1(S \times G)$. As a corollary we show that $\overline{S \times G}$ is homeomorphic with $\hat{S} \times \hat{G}$.

The Author wishes to express his gratitude to Prof. A. Olubummo for his valuable discussions during the preparation of this paper.

§ 2. The topology of $\mathfrak{N}(l_1(S,A))$

Our main interest in this section is to obtain a homeomorphism between the space $\mathfrak{N}(l_1(S,A))$ of maximal regular ideals of $l_1(S,A)$ and the space $\mathfrak{N}(A) \times \hat{S}$ with the product topology.

We begin with a description of the topologies of \hat{S} and $\mathfrak{M}(A)$.

- 2.1. According to the well-known Gelfand theory for Commutative Banach algebras [cfr., 7, Chapters IV and V], the space of regular maximal ideals of h(S) may be identified with the space of all homomorphisms of h(S) onto the complex numbers [7, Theorem 23 A]. By [4, Theorem 2.7] we can identify the space of regular maximal ideals of h(S) with the set of all semicharacters of S. We associate with every $f \in h(S)$ its Fourier transform \hat{f} , which is the complex function of \hat{S} , whose value at $\chi \in \hat{S}$ is given by $\hat{f}(\chi) = \sum_{x \in S} f(x) \chi(x)$. We now define a topology for \hat{S} in such a way that every function \hat{f} is continuous. The most natural way of doing this is to introduce the weakest topology generated by all functions \hat{f} . This is the weakest topology (i.e. the topology with the smallest family of open sets) on \hat{S} relative to which every function \hat{f} is continuous. This topology is called the Gelfand topology of \hat{S} . It is well-known [7, Theorem 19B] that \hat{S} is a locally compact Hausdorff space and that all functions \hat{f} vanish at infinity in \hat{S} . \hat{S} is therefore a locally compact Hausdorff space under the Gelfand topology.
- 2.2. Suppose a is a fixed element in A then $\phi_M(a)$ defines a complex-valued function \hat{a} on the set $\mathfrak{N}(A)$ of all regular maximal ideals of A, by $\hat{a}(M) = \phi_M(a)$. Suppose $\mathfrak{N}(A)$ is given the weak topology which makes the functions \hat{a} all continuous. By Theorem 19B of [7], $\mathfrak{N}(A)$ is locally compact and the functions \hat{a} all vanish at infinity in $\mathfrak{N}(A)$. The product topology of $\mathfrak{N}(A)$ and \hat{S} is locally compact [5, Theorem 2–52]. We are now in a position to prove the following.
- 2.3. Theorem. The space $\mathfrak{M}(l_1(S,A))$ of all regular maximal ideals of $l_1(S,A)$ with the weak topology is homeomorphic with the space $\mathfrak{M}(A) \times \hat{S}$ with the product topology.

Proof. By Corollary 3.4 of [1], $\exists a \mid I = I$ correspondence between $\mathfrak{M}(l_1(S,A))$ and $\mathfrak{M}(A) \times \hat{S}$. For $f \in l_1(S,A)$ define \hat{f} on $\mathfrak{M}(A) \times \hat{S}$

by setting $\hat{f}(M,\chi) = J_{(M,\chi)}(f)$. The weak topology of $\mathfrak{M}(l_1(S,A))$ is the topology induced on $\mathfrak{M}(A) \times \hat{S}$ by the family of functions $\mathfrak{F} = \{\hat{f} \mid f \in l_1(S,A)\}$ which are defined on $\mathfrak{M}(A) \times \hat{S}$. For each positive integer n, $\{f_i\}_{i=1}^n \subset l_1(S)$ and $\{\alpha_i\}_{i=1}^n \subset A$, there exists a function \hat{h} defined

on $\mathfrak{N}(A) \times \hat{S}$ by $\hat{h}(M,\chi) = \sum_{i=1}^n a_i f_i(M,\chi)$. Let \mathfrak{I} be the family of functions so defined, then $\mathfrak{I} \subset \mathfrak{F}$. It will be shown that \mathfrak{I} is dense in \mathfrak{F} in the uniform-norm topology which will in turn imply that the supnorm topologies induced on $\mathfrak{N}(A) \times \hat{S}$ by \mathfrak{I} and \mathfrak{F} are identical. In fact, suppose $f \in l_1(S,A)$, then $\exists f_1, f_2, \cdots, f_n \in l_1(S)$ and $a_1, \cdots, a_n \in A$ such that $\left\| f - \sum_{i=1}^n a_i f_i \right\| < \epsilon$, for a given $\epsilon > 0$. Then clearly,

$$\left| \widehat{f}(\mathbf{M}, \chi) - \sum_{i=1}^{n} a_i f_i(\mathbf{M}, \chi) \right| \leq \left\| f - \sum_{i=1}^{n} a_i f_i \right\| < \varepsilon.$$

Hence

$$\sup_{(\mathrm{M}, \mathrm{X}) \in \ \mathfrak{N} \ (\mathrm{A}) \times \hat{\mathbb{S}}} \left| \hat{f}(\mathrm{M} \, , \mathrm{X}) - \sum_{i=1}^{n} a_{i} f_{i}(\mathrm{M} \, , \mathrm{X}) \right| \leq \varepsilon \, .$$

The family of functions 3 satisfy the following properties:

- (I) The functions in \Im separate points of $\mathfrak{M}(A) \times \hat{S}$ [cfr. 1, Cor. 3.4].
- (II) Functions in ${\mathfrak I}$ are continuous over ${\mathfrak M}\left(A\right)\times \hat{S}$ in the product topology.

In fact if $f \in l_1(S)$, $\alpha \in A$ and (M_0, χ_0) is a fixed point of $(A) \times \hat{S}$ and $\varepsilon > 0$, then

$$|\hat{a}f(M,\chi) - \hat{a}f(M_0,\chi_0)| \le ||a|| |\hat{f}(\chi) - \hat{f}(\chi_0)| + |\hat{a}(M) - \hat{a}(M_0)| ||f||_{l_1(S)}.$$

If $(M,\chi) \in \bigcup M_0 \times \bigcup (\chi_0)$, where $\bigcup (M_0)$ and $\bigcup (\chi_0)$ are neighbourhoods of M_0 and χ_0 in $\mathfrak{M}(A)$ and \hat{S} respectively $\ni |\hat{a}(M) - \hat{a}(M_0)| < \frac{\varepsilon}{2 \, ||f||_{I_1(s)}}$ and $|\hat{f}(\chi) - \hat{f}(\chi_0)| < \frac{\varepsilon}{2 \, ||a||}$, then $|\hat{a}f(M,\chi) - \hat{a}f(M_0,\chi_0)| < \varepsilon$. Hence $\hat{a}f$ is continuous at (M_0,χ_0) and by Remark I of [I] the functions in \Im are continuous on $\mathfrak{M}(A) \times \hat{S}$.

- (III) Not all functions in ${\mathfrak I}$ vanish at a fixed point of ${\mathfrak M}\left(A\right) \times \hat{S}.$
- (IV) Each function in \Im vanishes at infinity in $\mathfrak{M}(A) \times \hat{S}$.

In fact, suppose a_1 , a_2 , \cdots $a_n \in A$ and f_1 , f_2 , \cdots , $f_n \in l_1$ (s):

Let o_i , i=1, 2, \cdots n be the compact sets outside which $\hat{a_i}(M) = \varphi_M(a_i)$ are small and Q_i , i=1, 2, \cdots , n the compact sets outside which $\hat{f_i}(\chi)$ are small. Then $\exists \delta > 0$ such that $|\hat{a_i}(M)| = |\varphi_M(a_i)| < \delta$ if $M \notin \bigcup_{i=1}^n o_i$ and $|\hat{f_i}(\chi)| < \delta$ if $\chi \notin \bigcup_{i=1}^n O_i \times \bigcup_{i=1}^n O_i \times \bigcup_{i=1}^n Q_i$ is a compact subset of $\mathfrak{M}(A) \times \hat{S}$ by Tyconoff's Theorem [5, Theorem I-28].

Hence if $(M,\chi) \notin \bigcup_{i=1}^{n} o_{i} \times \bigcup_{i=1}^{n} Q_{i}$, then $M \notin \bigcup_{i=1}^{n} o_{i}$ or $\chi \notin \bigcup_{i=1}^{n} Q_{i}$. $\left| \sum_{i=1}^{n} a_{i} f_{i}(M,\chi) \right| = \left| \sum_{i=1}^{n} \hat{f}_{i}(\chi) \hat{a}_{i}(M) \right| \leq \underset{1 \leq i \leq n}{n} \sup \sup_{\chi} |\hat{f}_{i}(\chi)| \sup_{1 \leq i \leq n} |\hat{a}_{i}(M)|.$ Let $k_{1} = \sup_{1 \leq i \leq n} \sup_{\eta} |\hat{f}_{i}(\chi)|$ and $k_{2} = \sup_{1 \leq i \leq n} |\hat{a}_{i}(M)|.$ Then $\left| \sum_{i=1}^{n} a_{i} f_{i}(M,\chi) \right| \leq \underset{i=1}{n} \sum_{i=1}^{n} a_{i} f_{i}(M,\chi) \leq \underset{i=1}$

§ 3. The case where A is an l_1 -algebra

In this section, we shall study the Banach algebra $l_1(S,A)$ in the special case where A is an l_1 -algebra. Let $A=l_1(G)$, where G is a discrete commutative semigroup. A function in $l_1(S,l_1(G))$ takes at each $x \in S$ a value which is an element of $l_1(G)$. In the case where S and G are locally compact Abelian groups, Johnson [6] has shown that $B^1(S,L_1(G))$ is isometric and isomorphic with the group algebra $L_1(S \times G)$. We wish to show in this section that the result of Johnson can be generalized to the algebra $l_1(S,l_1(G))$.

3.1. We begin by defining a dense subset of $l_1(S, l_1(G))$. Consider the subset \mathfrak{D} of $l_1(S, l_1(G))$ consisting of all finite linear combinations of elements of the form hk, where $hk(x) = h(x) \cdot k$ for $h \in l_1(S)$ and $k \in l_1(G)$, that is, if $f \in \mathfrak{D}$, $f = \sum_{i=1}^{n} h_i k_i$. The set \mathfrak{D} contains the simple functions and hence it is dense in $l_1(S, l_1(G))$.

3.2. Let S and G be commutative semigroups. Denote by $S \times G$ the set $\{(x, y) : x \in S, y \in G\}$. Define multiplication in $S \times G$ as follows:

$$(x_1, y_1)(x_2, y_2) = (x_1 x_2, y_1 y_2)$$
 $(x_1, x_2 \in S; y_1, y_2 \in G).$

With this multiplication, $S \times G$ becomes a discrete commutative semigroup if both S and G are. We can thus consider the l_1 -algebra of $S \times G$ as in [4].

 $l_1(S \times G)$ is therefore the set of all complex-valued functions f on $S \times G$ which vanish except on a countable subset of $S \times G$ and for which

$$||f|| = \sum_{(x,y) \in S \times G} |f(x,y)|$$
 is finite.

Multiplication is defined in $l_1(S \times G)$ by convolution as follows:

for
$$f, g \in l_1(S \times G)$$

$$(f * g)(x, y) = \sum_{(u,v),(w,z),(u,v)(w,z) = (x,y)} f(u,v)g(w,z).$$

We note that the simple functions are dense in $l_1(S \times G)$ [cf., I]. We now state and prove the main result of this section.

3.3. Theorem. If S and G are discrete commutative semigroups, then $l_1(S, l_1(G))$ is isomorphic and isometric with $l_1(S \times G)$.

Proof. Let $\mathfrak D$ be the subset of $l_1(S, l_1(G))$ as defined in 3.1, then $\mathfrak D$ is a dense subspace of $l_1(S, l_1(G))$. Let $f \in \mathfrak D$ with $f = \sum_{i=1}^n h_i k_i$ where $h_i \in l_1(S)$ and $k_i \in l_i(G)$ $i = 1, 2, \dots, n$. Define a function f_{φ} on $S \times G$ as follows: for $(x, y) \in S \times G$;

(3.3.1)
$$f_{\varphi}(x, y) = \sum_{i=1}^{n} h_{i}(x) k_{i}(y).$$

Using Theorem 12–44 of [2], it can be shown that $\sum_{(x,y)\in S\times G} |f_{\varphi}(x,y)|$ is finite.

Consequently $f_{\varphi} \in l_1(S \times G)$. Denote by Π the set of all functions $f_{\varphi} \in l_1(S \times G)$. Then $\Pi \subset l_1(S \times G)$. Consider a mapping T on $\mathfrak D$ to Π defined as follows: for $f \in \mathfrak D$,

$$Tf = f_{\varphi}$$
.

For $f, g \in \mathfrak{D}$, let $f = \sum_{i=1}^{n} h_i k_i$ and $g = \sum_{j=1}^{n} c_j d_j$, then

$$f * g = \sum_{i=1}^{n} \sum_{j=1}^{n} (h_i * c_j) (k_i * d_j)$$

Hence $T(f * g) = (f * g)_{\varphi}$, where $(f * g)_{\varphi}$ is defined by

$$(3.3.2) (f*g)_{\varphi}(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} (h_i * c_j)(x) (k_i * d_j)(y).$$

Consider
$$(f_{\varphi} * \mathcal{E}_{\varphi})(x, y) = \sum_{(u,v),(w,z),(u,v)(w,z)=(x,y)} f_{\varphi}(u, v) \mathcal{E}_{\varphi}(w, z).$$

By (3.3.1)
$$(f_{\varphi} * g_{\varphi})(x, y) = \sum_{(uw,vz)=(x,y)} \left[\sum_{i=1}^{n} h_{i}(u) k_{i}(v) \sum_{j=1}^{m} c_{j}(w) d_{j}(z) \right]$$

$$= \sum_{(uw,vz)=(x,y) \in S \times G} \left[\sum_{i=1}^{n} \sum_{j=1}^{m} h_{i}(u) k_{i}(v) c_{j}(w) d_{j}(z) \right],$$

Using Theorem 12-42 of [2],

$$(f_{\varphi} * g_{\varphi})(x, y) = \sum_{uw=x} \sum_{vz=y} \left[\sum_{i=1}^{n} \sum_{j=1}^{m} h_{i}(u) k_{i}(v) c_{j}(w) d_{j}(z) \right].$$

$$\sum_{uw=x} \sum_{vz=y} \sum_{i=1}^{n} \sum_{j=1}^{m} h_{i}(u) k_{i}(v) c_{j}(w) d_{j}(z)$$

is absolutely convergent and hence we can rearrange the series without changing its sum. Consequently,

$$\left(f_{\varphi} * g_{\varphi}\right)\left(x, y\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(h_{i} * c_{j}\right)\left(x\right)\left(k_{i} * d_{j}\right)\left(y\right).$$

Thus $f_{\varphi} * g_{\varphi} = (f * g)_{\varphi}$ and T(f * g) = Tf * Tg.

So that T is multiplicative. A straight-forward calculation shows that T is well-defined and I-I. Clearly T is onto and linear. T is thus an isomorphism of $\mathfrak D$ onto $\Pi\subset \mathcal U_1(S\times G)$. Furthermore

$$||Tf|| = ||f_{\varphi}|| = \sum_{(x,y) \in S \times G} |f_{\varphi}(x,y)| = \sum_{x \in S} \sum_{y \in G} \left| \sum_{i=1}^{n} h_{i}(x) k_{i}(y) \right| =$$

$$= \sum_{x \in S} \left| \left| \sum_{i=1}^{n} (h_{i}(\cdot) k_{i}) (x) \right| \right|_{l_{1}(G)} = \left| \left| \sum_{i=1}^{n} h_{i} k_{i} \right| \right|_{l_{1}(S,l_{1}(G))},$$

where

$$f = \sum_{i=1}^{n} h_i \, k_i.$$

The set of all functions ψ_{φ} defined by

$$\psi_{\varphi}(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{ij} \, \xi_{E_{i}}(x) \, \xi_{E_{j}}(y)$$

are simple functions in $l_1(S \times G)$ and are contained in Π . It follows that Π is a dense subspace of $l_1(S, l_1(G))$. Thus T is an isometric isomorphism of a dense subspace $\mathfrak D$ onto a dense subspace Π . Taking closures with respect to their corresponding norm topologies, it follows that T is an isometric isomorphism of $l_1(S, l_1(G))$ onto $l_1(S \times G)$ and the proof is complete.

3.4. COROLLARY. If S and G are discrete commutative semigroups, then $\widehat{S \times G}$ is homeomorphic with $\widehat{S} \times \widehat{G}$.

REFERENCES

- [1] O. AKINYELE, A generalization of the l₁-algebra of a commutative semigroup, «Accad. Naz. dei Lincei, Rendiconti», ser. VIII, 49 (1-2), 17-22 (1970).
- [2] T. M. APOSTOL, Mathematical Analysis, Addison-Wesley 1957.
- [3] A. HAUSNER, The Tauberian Theorem for group algebras of vector-valued functions, « Pacific J. of Math. », 7, 1603–1610 (1957).
- [4] E. HEWITT and H. S. ZUCKERMAN, The l_1 -algebra of a commutative semigroup, «Trans. Amer. Math. Soc.», 83, 70–97 (1956).
- [5] J. G. HOCKING and G. S. YOUNG, Topology, Addison-Wesley 1961.
- [6] G. P. JOHNSON, Spaces of functions with values in a Banach algebra, «Trans. Amer. Math. Soc. », 92, 411-429 (1959).
- [7] I.. H. LOOMIS, An Introduction to Abstract Harmonic Analysis, Van Nostrand, New York 1953.