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Matematica. — H arnack’s Theorems on convergence fo r  nonlinear 
operators. Nota di B r u c e  C a l v e r t , presentata n  dal Corrisp. 
G. S t a m p a c c h ia .

RIASSUNTO. — In questa Nota si studiano i Teoremi di Harnack per equazioni non
lineari alle derivate parziali di tipo ellittico.

I n tr o d u c tio n

This paper shows th a t H arn ack ’s Theorem s on convergence hold in a 
nonlinear setting. H arn ack ’s first and second convergence Theorem s (Kellog 
[t], pages 248, 263) are as follows.

F ir s t  T h eo rem

Suppose o is a bounded open subset of Kn, and un is a sequence of conti
nuous real valued functions on the closure of o. Suppose Aun = 0  in o, 
(where Au — d iv (ux)) and un converges uniform ly on the boundary  of o. 
T hen un converges uniform ly on o (i.e. in L°°) and its limit u  satisfies Au  =  o 
in o.

S econd  T h eo r em

Suppose 0 is a bounded open subset of Kn, and un is a sequence of conti
nuous real valued functions on 0. Suppose A u n =  0 in 0, un is increasing, 
and un(y) is bounded for some y  in o. Then un converges in Lj^c, and its limit 
u  satisfies A u  =  o in o.

Both these Theorem s hold when A is replaced by A  defined by A u  — 
—  div (I ux \**~2 ux) for some m  in (1 ,0 0 ) .  T he aim  of this note is to show th a t 
these theorem s hold for a class of operators A which are defined by:

r
(1) (Au , v) =  J (a(x , u , u f  , vx) +  b(x , v , vx) v

for u  in W L f and v in W 1,m with com pact support. T he structure of (1) will 
be governed by the following conditions, o is a bounded open subset of R w 
and m  is in (1 , 00). Conditions (2) and (3) guarantee th a t ( i ) j s  defined for 
u  and v as given.

(2) a) o x R x R ” ^  R ” and B) o x R x R ” -> R  are m easurable in 
x  for (z , p)  in R x R ” and continuous in (z , p)  for almost all x  in o.

(3) I a (x  ) ^ , P) I +  I b(x  , z  , p )J <  c{\ z \m l j r \ p \ m 1 +  ï) (*)

(*) Nella seduta del 13 maggio 1972.
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(4) (a ( x , z  , p) a(x  , y , q) , p  —  q) (b(x , z , p) — b(x , y  , q)) (z — y)  >  o

(4 a) cl (o) is the union of the closures of a sequence of open sets o{ which
have boundaries of m easure o. For each set o, there is in R" , s'{ 
in R, one of them  nonzero, such th a t for almost all a: in o2 if we have 
equality  in (4) then

( p — q , s t)  +  ( z — y  , s'.) =  o .

F or alm ost all x,- in o,- there is a finite set j  , k  , •• •, m  such th a t x {
m ay be joined to a point Xj in oy by  a line f  in the direction ; Xj
to a point xk in ok by  a line /y in the direction sd ;• • •; and m ay 
be joined to a point in the com plem ent o f cl (o) by  a line l m in the 
direction SOT. (M ore generally  we m ay let s,- be a sm ooth nonzero 
divergence free vector field and replace /• by the integral curve of 
.sc, and s', by an L°° function).

(s) (a(x >z ,P) , P ) >  d \  p \ m —  c ( \ z \ m +  1)

(6) b(x , u , v )  —  b(x , u -— k , v) —  div (a (x , u , v) —  a(x , u -— k  , v)) >  o 
for u : o —̂ R and v : o —> R  in L ”’ and k >  o a constant function.

(7) N ear the boundary  of o,

{a(x-,z ,p )  —  a ( x , y  , q) , p  —  q) >  h(z  , y)  m in ( \ p \m~ 2 , j q \m~2) \ p — q f  

— f ( ?  ,y)  (sup ( \ p \ m , \q\m) +  c)

where h : R x  R —> {r  in R  : r  >  0} is continuous and

/ :  R x R - > { r  in R : r > o }  is continuous and satisfies 

f  (z , ÿ)  o as z  —  y  o

(8) N ear the boundary  of o,

a(x  , z  , p ) =  d ( x  , p) +  c(x , z),

\ d ( x , p ) \ < c \ p \ m- \

{d(x , p) , p) > d \ p \ m,

and w ith h > 0

(d(x , p ) — d ( x , q )  , p —  q) >  A min ( \ p \m~ 2 , \q\m~2) \p '— q \2 .

(9) \ a ( x , z , p ) \  +  \ b ( x , z , p ) \ <  c ( \ z l m~ \ +  \p I"“ 1)

and

( a ( x , z , p ) , p ) > d \ p \ m- c \ z \ m .

T he A uthor expresses g ra titude to Prof. S tam pacchia for his interest
and advice.

46. — RENDICONTI 1972, Voi. LII, fase. 5.
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The Convergence Theorernes:. In  this section, we state a Theorem , and 
divide its proof into seven lem m ata.

THEOREM. Harnack's first Theorem holds fo r  A  defined by (1) i f  we assume 
(2), (3), (4), (4 a), (5), (6) and  (7) when m  <  2, and  (8) i f  we allow m to be 
possibly > 2 .  Harnack's second theorem holds fo r  A defined by (fi) i f  we assume 
(9), (2), (4), (6) and (fi) when m  < 2  and  (8) i f  we allow m to be possibly >  2.

Lemma i. Suppose un is a sequence of real valued continuous functions 
,on the closure of o, and A u n — o where A  given by (1) satisfies (2), (3), (4), 
(4 d)i and  (6). Then fo r  all n ,m

sup {(u n —  u f i  (fi) \ x  in 0} =  sup {(un —  u fi  ( f i  : ^  in bdy (o)}, 

that is , the weak m aximum principle holds.

In  particular if un converges uniform ly on bdÿ (o) then, un converges 
uniform ly on cl (o) to a continuous function u : cl (o) R.

Proof. Conditions (2) and (3) im ply A  is defined by ' (1). Suppose 
A u =  A v =  o on o, u  and v being continuous on cl (o) and satisfying u < u  +  k 
on bdy (o) where ^  >  o is a constant. W e have to show th a t u  <  v +  k  on o. 
Given o' com pactly contained in o we m ay, since u and v are continuous, 
take o" com pactly contained in o such th a t o ' C o "  and u  <  v +  k  on bdy (0") 
in the sense of W 1,w(o"). Since A u  =  A v  =  o on o", and (u —  v —  k f i  
is in W j’w(o"),

o =  (Au  —  A v  , (u —  v —  k)fi
r

=  J  (a(x , u  —  k , ( u  —  k)x) —  a(x , v , vx) , ((« —  k —  v)+)x)

+  j (b(x , u  —  k , (u  —  k)x) —  b ( x , v ,  vx)) (u —  k —  v)+

+  j  (a (x , u , ux) — a(x , u —  k , (u —  k)x) , ((u —  k  —  v)+)x)

-j- J  (b(x , u , ux~) —  bx , u  —■ k , (u —  k)x) (u —  k —  v)+.

By (6) the sum  of the last two term s is nonnegative.
W e will show (4 a) implies A  is strictly T-m onotone, th a t is if (u — vf i  

is in W j’w(o") and
(Au  —- A v  , (u —  vfi) — o

then (u —  vf i  =  o. This gives (fu —  k) — v f i  =  o. Hence, u < v  +  k on o" 
and consequently on o by the arb itra ry  choice of o'.

To prove A  is strictly  T -m onotone we m ay assume by induction th a t 
(Au  —  A v  , (u —  vfi)  =  0, ( u -— vf i  — o on oy, and show (u — vfi  =  o 
on oi .

Since
o =  ( a ( x , u ,  ux) — a{x  , v , vx) , (u —  v)x ) +

{b(x , u  , u x) — b{x , v  , v x) )(u  —  v)+ ,
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we have by (4 a) th a t a.e. in cl,

(fu —  v) t  , s) +  (u —  v)+ s' =  o.

If  j  =  o then .s' =|= o and hence (u —  v)+ — o. Otherwise we m ay suppose 
* =  (I > o • • • o), giving

( u ---v ) f  +  (u —  v)+ s' =  o .

It follows th a t if
zvz =  (es'Xi (u —  v)+) then wXl =  o .

Since w  is in w1,m, we have alm ost everywhere (where x  is joined to Xj in Oy 
by a line in the direction s, contained in O- and oy except for a set of m easure 
zero)

W (x) =  j wXl dx1 =  o ,

the integral being along the line from  Xj to x. Hence (u — v)+ =  o a.e. on o,-.

Lem m a 2. Suppose un a sequence of real valuedfunctions on o, and A u n =  o 
where A  given by (1) satisfies (2), (3) and  (5).

Then un is bounded in (o) i f  it is bounded in L£c(o), and in particular 
i f  it is bounded in  L°°(o).

Proof. T ake y  in Co°(o), y  >  o, and suppose Ku  =■ o, A being defined 
by (1) since (2) and (3) hold.

o =  (Au  , uym)

=  \  (&(x j ux) u f ) y m +  (a(x  , u  , ufi , y x) u m ym~1+  b(x , u  , ux) u ym.
j

By (3) and (5)

\ d
J

I / I  \ m  — \  . I i w - 1  I \  I I- mT  c ( I u I T - I ux j +  i ) \ u \ y  .

We absorb the term s in \ux \ into the left hand side by Y oung’s inequality

ab <  p “1 (ed f  +  q~x (bjef

where e >  o , p  >  I , p~x +  q-1 — I.
T he Result is

I I Ux \m y m <  j c(c , d  + \ y x \m) ( i  +  \u \m).

Lem m a 3. Let  A  be given by (i), satisfying (2) and (3) and  (4). Then u 
in W L,m is a solution of A u  — o i f  and only if*

(Av ,v  —  u) >  o

fo r  all v in Wt<T such that v — u on a neighbourhood of bdy (o).

I \ m  nt  _

\ u x \  y  < c ( \ u \ m+ i ) y m +  c ( \ u r 1 + \m — l
+  0  \yx I \ u\ my m — 1



Lincei -  Rend. Se. fis. m at. e nat. -  Vol. L II -  maggio 1972 [368]6 2 6

Proof. Suppose A u  =  o. By (4), if v is in and v —  u is in W 1,w
with com pact support,

(Av , v —  u) >  (Au  , v —  u) — o .

Conversely, suppose th a t for v in W 1,m , v. =  u on a neighbourhood of 
bdy (o), and

(Av , v —  u) >  o.

T ake w  in W 1,m w ith com pact support, t  in (o , 1), and set vt =  u  +  tw . 
Since (Avt , vt —  u) >  o; if follows tha t

(Avt , w) >  o .

Since vt converges to u  and A  is continuous by (2) and (3) we have

(Au  , w) >  o ,
which implies A u  — o.

L emma 4. Suppose (2), (3) and (4) hold, <2^ A is given by (1). Zétf un be 
a sequence of functions satisfying A u n — o. Let u be in  (o) and let o"
be a neighbourhood of bdy (o). Suppose un converges to u in  W }^ (o"), and un 
converges weakly to u in W 1,m (o') fo r  o' compactly contained in  o. Then A u  =  o.

Proof. T ake v in W 1,m such th a t v — u on a neighbourhood of bdy (o). 
T ake an open set o-' com pactly contained in o which contains the support of 
v —  u  and the com plem ent of 0". Let /  : o -> [o , 1] be smooth, its support 
contained in o", and equal to 1 on a neighbourhood of the boundary  of ob 
L et vn =  v +  (un —  u) f .

By Lem m a 3, since A un — o and vn =  un on a neighbourhood of bdy  (o'),

(Avn , v n —  un) > o .

Since u„ converges w eakly to u  in Wi^* (o'), and v„ converges to v in W 1,m(o')
we have

(Av , v —  u) >  o .

By Lem m a 3 again, A u  == o on o', and hence on o.

Lem m a 5. Suppose m  <  2. Suppose (2), (3) and  (7) hold in a neighbourhood 
o" of bdy (o).

Let un be a sequence of real valued functions satisfying A u n —  o, A  given 
by (1). Suppose un is convergent in  L°° (o"), and bounded in  W ^ C o " ) . 
Then un is convergent in (o").

Proof. L et y  >  o be in C™ (o"). By H older’s inequality  (here we need 
m  <  2) we have:

( IO) J \ux —  Vx \my z j (sup ( \ux \ , \vx \))my f

( J  (SUP (I ux I , I vx f))"-2 I ux —  vx f  y 2̂  .
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Since un is bounded in WL\T(o/7), the first integral on the right hand side is 
bounded. Since un is bourided in L î^(o") there is h >  o such th a t h(u ,v)  >  
> k  >  o on the support of y.  T hen by (7) we have

( h ) j ' ( s u P ( i ^ i >i ^ i ) r - 2 i ^ - ^ i v 2

r*
< A j  (a (x , u  , ux) —  a (x , v , vx) , ux —  vx) y 2 

+  j f ( u  , V)  (sup t \u x \m , \vx \m) +  c)y2 .

Since un is convergent in L°°, the second integral converges to o. By (11) 
if m — 2 or (10) and (11) if m <  2, we have to show th a t the first integral on 
the right hand side of (11) converges to o.

Since (Au  —  Av  , (u —  v) y 2) =  o, we have

(12) J  (a (x , u  , ux) —  a(x , v  , v x) , ux —  vx) y 2

«*) —  a (x , v , vx) I I y x I 2 _y | u  —  v 

ux) —  b{x  , v  , v x) \ y 2 \u —  v\ .

U sing (1) and the convergence of un in L°°, the right hand side of (12) 
converges to o.

LEMMA 6. Suppose that m is not necessarily <  2. Suppose (2) and  (3) 
hold, and  A  is given by (1). Suppose that un is a sequence of real valuedfunctions 
satisfying A u n =  o. Suppose un is convergent in  L^c(o//) and bounded in 
WiocT (o") where on is a neighbourhood of bdy (o) on which (8) holds. Then un 
is convergent in W j l f  (o").

Proof. L et y , u , v  be as in Lem m a 5. Let F  be the set where 
\ux \ <  e \ vx \ , e >  o to be chosen. By (8)

vx \my % <  d 1 j  (d (x , vx) , vx) y z
F

<  d 1 (d (x , vxy — â(x  , ux) , vx —  ux) y 2
F

+  d 1J  c \ u x\m 1 ( I vx I +  I I ) y 2

F

+ d ~ i J
F
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T aking e small we have the existence of C depending on c , d such that 

j  \vx \ m  y 2 <  c j~ (d(x , vx) —  d (x  , ux) , vx —  ux) y 2 .
F F

It follows th a t there is another constant C such tha t

(13) j \ux —  vx \my 2 < C  j (d(x , ux) —  d (x  , vx) , u x —  vx) y 2.
F F

Sim ilarly if G is the set where \vx \ <  e | ux j then 

( ̂  4 ) j ” I &'x I y  C  j (y  j 'M'x) d (pc , , ux ■ vx) y  .
G G

Let E be the com plem ent of F and G, th a t is the set where \ux \=^=oy 
I vx I =j= o, and

( x5) e \ v x \ < \ u x \ <  éT1 \vx \ .

W e take m th powers in (8) to give on E

I ux—  vx \m <  C (sup ( I ux f ~ m, I vx f ~ m) T 12 (d (x , u x) —  d ( x ,  vxj , ux—  vx)ml2. 

By C auchy’s inequality  this gives

(16) j \ u x —  vx \my 2 < C ^ j  (d(x , u x) —  d ( x  , v x) , u x —  vx) y 2\112.
E E

( J  (sup (I«* Vx I2 m) T  (d (x , u x) —  d (x , vx) , ux - \ m  — 1 2■vx) y
1/2

W e obtain a bound for the second integral on the right hand side of (i6) 
by using (8) and (15). W e now show the first integral on the righ t converges 
to zero.

(17) f  ( d ( x , u x) —  d ( x , v x) , u x— vx) y 2 <  f ( d ( x , u x) —  d ( x , v x) , u x— vx) y 2

E 0

< (a(x ,UyUx) — a(x yV y vx) , ux — vx) y 2 + c(xyU) —  c(x y V)\ (ux —  vx) y 2.

T he first integral on the righ t converges to o by (12). T he second converges 
to o because of convergence of un in L ^c.

Since (17) converges to zero, so does (16), and sim ilarly (13) and (14). 
Hence, un converges in w L’cT (o '').
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L emma 7. Suppose (2), (6) and  (9) hold and A  is given by ( 1). S u p p o sed  
is a real number, M 2> o, and un is an increasing sequence of functions satisfying 
A u n =  o and un >  — M cw o. Suppose there is a point y  in  o such that un(y) 
is bounded. Then un is convergent in L ^c.

Proof. W e shall refer to T rudinger [4] for m uch of this proof. W e m ay 
assum e M >  —  2 un . Let u  be an element of the sequence u n. Let y >  o 
be in Co° (K), K being a cube in o. Let p  be >  o.

By Serrin [3] u  is in L°°(K). It then follows that, y m (u + M /  is in W j’w. 
(Au  , y m(u +  M)^) =  o gives

°  =  j  (a(x , U , ux) , ux) p  (u +  M ? - 1 y m +  j (a(x , u  , ux) y x) m ym~x (u +  M /  +

H- j b(x ,u  , uP)ym (u +  M)ÿ .

By (9)> this implies

j \ux \m{ u - ± W f ~ xy m <  cà~x f \ u \ m(u y m
' J J

+  d ” 1/ -1 j  c(\u\™~x +  j ux \m~l) mym~l (u +  M /

+  d - 1/ - 1 [  c ( \u  r 1 + 1 I"“ 1) y m (« '+ M /  •

By Y oung’s inequality  we take the term s in \ux \ to the left hand side, 
and use the fact u +  M >  u, to give

(18) J K r ^  + M/-y*<C(M) +  \yx \my ( u + M T +* - \

Letting w .— u  + M  (18) becomes

j I ! m p ~  1 m ^  s-*, /  , , —K  m I ✓  m  , i \m \j \ w x \ wp y  <  C (1 +  p  ) j (y  +  \yx \ ) w  +p ,

which is the form ula (1-.20)' of [4].
T he conclusion of Theorem  1.3 of [4], follows for w  by repeating the 

Proof of» this Theorem  from  (1.20) onward. T hat is, for y > m — 1

0 9 )  m ax w  <  cp~”̂  UHIY>K(2p)-

Since (6j) implies th a t w  =  u  -f- M is a positive supersolution, by [4, 
Theorem  1.2] for y <  n (m —  1) (n —  m)~x we obtain

(20) p~n,Y IM IY,K(2P) <  c m in w .
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W e note un(y) is defined since the un are continuous by L adyzhenskaya 
and U ra l’tseva [2, Theorem  1.1, page 251]. Since un(y) are bounded so is m in 
(un) over o ' containing y.  I f  o ' is com pactly contained in o then (19) and 
(20) im ply the existence of C such tha t

m ax (un +  M) <  C m in (un +  M).
0' 0'

Since un is bounded in L°°(o), by [2, Theorem  i.l,-' page 251] un is 
bounded in C0'a cl (o') for o ' com pactly contained in o. Consequently u n is 
com pact in the space of continuous functions on cl (o'), and since it is an 
increasing sequence it converges uniform ly on cl (o').
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