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Matematica. — /Zarnack’s Theorems on convergence for nonlinear
operators. Nota di Bruck CALVERT, presentata @ dal Corrisp.
G. STAMPACCHIA.

RIASSUNTO. — In questa Nota si studiano i Teoremi di Harnack per equazioni non-
lineari alle derivate parziali di tipo ellittico.

INTRODUCTION

This paper shows that Harnack’s Theorems on convergence hold in a
nonlinear setting. Harnack’s first and second convergence Theorems (Kellog
[1], pages 248, 263) are as follows. '

FIRST THEOREM

Suppose 0 is a bounded open subset of R”, and #, is a sequence of conti-
nuous real valued functions on the closure of o. Suppose Az, = 0 in o,
(where Az = div (#,)) and #, converges uniformly on the boundary of o.
Then #, converges uniformly on o (i.e. in L) and its limit # satisfies Au = o
in o.

SECOND THEOREM

Suppose 0 is a bounded open subset of R”, and #, is a sequence of conti-
nuous real valued functions on 0. Suppose Aw, = 0 in 0, #, is increasing,
and #,(y) is bounded for some y in 0. Then %, converges in L., and its limit
% satisfies Az = o in o.

Both these Theorems hold when A is replaced by A defined by Au =
— div (| %, |"*u,) for some 7 in (1, o0). The aim of this note is to show that
these theorems hold for a class of operators A which are defined by:

(1) (Au,v)=f(a(x,u,ux),vx)—!—b(x,v,vx)v

for 2 in Wi and v in W"” with compact support. The structure of (1) will
be governed by the following conditions.. o is a bounded open subset of R”
and # is in (1, 00). Conditions (2) and (3) guarantee that (1) is defined for
u and v as given.

(2) @) oXRXR"—- R” and 4) oXRXR”—> R are measurable in
x for (¢, p) in RXR”" and continuous in (g, p) for almost all x in o.

(3 la(x,z,p) |+ |6(x,2,0)|<c(z|" "+ |p|" '+ 1)

(*) Nella seduta del 13 maggio 1972.
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(a(x,Z,]?)—d<x,y,£7):ﬁ—?)+(5(96,3,1’)—“5("»J/:9))(3—J/)26

¢/ (0) is the union of the closures of a sequence of open sets o, which
have boundaries of measure 0. For each set o, there is s; in R” | s}
in R, one of them nonzero, such that for almost all x in o, if we have
equality in (4) then

P—g,s)+(E—y,sH)=o0.

For almost all x, in o, there is a finite set 7, 4,---, m such that x;
may be joined to a point x; in o; by a line /; in the direction s, ; x;
to a point x; in 0, by a line /; in the direction s,;---; and x,, may

be joined to a point in the complement of ¢/ (0) by a line /,, in the
direction S,,. (More generally we may let s; be a smooth nonzero
divergence free vector field and replace /; by the integral curve of
s;» and s, by an L* function).

(@(x,2,2), ) =d|p|"—c(ls]"+ D)
b(x,u,v)—b(x,u—fc‘,v)——div(a(x,u,v)——a(x,u—~k,v))2o

for #:0—R and v:0—R” in L” and £2>0 a constant function.

Near the boundary of o,

(alr,z,p)—al,y.,9),p—9 =k, »ymin(|p|"*, [¢|"™) |p—q¢|°

®)

—/f (e, 3) (sup (|2]", 1¢[") + <)
where /%:RXR—{rin R:» >0} is continuous and
SiRXR—={rin R:7» >0} is continuous and satisfies

fl,y)—o as z—y—>o0

Near the boundary of o,
a(x,8,p) =d(x, )+ c(x,2),
[d@, pl<clpI"™
d(x,8),p)=d|p|",

and with 2 > o

(9

and

@@, p)—d(x,9),p—g)=hmin(|p]",|g|"D|p—g2.

la(x, 2, D)+ 6,2, p)<c(="" + "™

(@(x,z,0),p)=d|p|"—c|z|".

The Author expresses gratitude to Prof. Stampacchia for his interest
and advice.

46. — RENDICONTI 1972, Vol. LII, fasc. §.
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The Convergence Theoremes. In this section, we state a Theorem, and
divide its proof into seven lemmata.

THEOREM. Harnack's first Theorem holds for A defined by (1) if we assume
(2), 3), @), (4 a), (5), (6) and (7) when m < 2, and (8) if we allow m to be
possibly >2. Harnack's second theorem holds for A defined by (1) if we assume
(9), (2), (4), (6) and (7) when m < 2 and (8) if we allow m to be possibly > 2.

LEMMA 1. Swuppose wu, is a sequence of real valued continuous functions
on the closure of o, and Au, = o where A given by (1) satisfies (2), (3), (4),
(4 @), and (6). Then for all n,m

sup {(#, —u,,) (x):x in o} = sup {(u,—u,,) (x):x in bdy (0)},
that is, the weak maximum principle holds.

In particular if #z, converges uniformly on bdy (0) then #, converges
uniformly on cl(o) to a continuous function #:cl(0) - R.

Proof. Conditions (2) and (3) imply A is defined by (1). Suppose
Az = Av = 0 on 0, # and v being continuous on ¢l (0) and satisfying 2 < % -+ £
on bdy (0) where £ > 0 is a constant. We have to show that # < v 4 £ on o.
Given o' compactly contained in o we may, since # and v are continuous,
take o'’ compactly contained in o such that o'C 0"" and # < v + 4 on bdy (0'")
in the sense of W"™(0'"). Since Au= Av =0 on 0, and (u—v—A)"
is in Wy (o),

o= (Au—Av,(u—v—~"

re

=] (@@, u—k, w—r)—alx,v,0,), («—FkF—2)".)
—}--J‘(b(x,u—/e,(u—k)x)——,—é(x,v,vx)) (u—k—o)*
T J.(a(x,u,ux)—a@c,u—é,(%——é)x),((u—k———v)"')x)

—}‘—f(é(x,u,ux)—bx,u—-,é,(u——,é)x) (. —k—o)*.

By (6) the sum of the last two terms is nonnegative.

We will show (4 @) implies A is strictly T-monotone, that is if (z — v)*

is in Wy"(0'") and

(Au—Av, (u—o)") =o
then (# — v)" = o. This gives ((# — £) —2)* = 0. Hence, # < v+ % on 0"
and consequently on o by the arbitrary choice of o'

To prove A is strictly T-monotone we may assume by induction that
(Au— Av , (u— o)) = o, (@;——71)4' =0 on o;, and show (x—o)*=o0
on o;.

Since

0=f(a(x,%,%x)——a(x,v,vx),(%—v):)Jr
e, u,u)—bx,v,v,) (u—2o)",
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we have by (4«) that ae. in o;

((u—v);r ,8) + (u—v"'s’ = o.
If s = o then s’ <=0 and hence (x — )" = 0. Otherwise we may suppose
s=(1,0---0), giving
(#—v)f + (u—o)rs' =o.
It follows that if

w, = (¢/" (u—1uv)") then w. =o.

. .. 1, L .
Since w is in w", we have almost everywhere (where x is joined to x; in o,
by a line in the direction s, contained in 0; and o, except for a set of measure

zero) .

w(x)z}wxldﬁ:o,

the integral being along the line from x; to x. Hence (x — v)* = 0 a.e. on o;.

LEMMA 2. Swuppose u, a sequence of real valued functions on o, and Au, = o
where A given by (1) satisfies (2), (3) and (5).

Then u,, is bounded in Wi (0) if it is bounded in L. (0), and in particular
if it is bounded in 1.%(0).

Proof. Take y in C§°(0), ¥ =0, and suppose Az = 0, A being defined
by (1) since (2) and (3) hold.

o = (Au, uy™)

= [(ale, w,w) w) 7+ (@l 1), 7) sy 1 b0, ) .

v

By (3) and (5)
J‘ﬁdluxlmﬂ’m < fﬂ(l%’m + 0" (" " D) |y [y
R ACE A K M K u N PP Vi
We absorb the terms in |#%,| into the left hand side by Young’s inequality
ab < p7 (ea) + g7t (Ofe)

where ¢>o0,p>1,p +ot=1.
The result is

1"y < [ elcod,m) (" + |pa]™ (1 2],
LEMMA 3. Let A be given by (1), satisfying (2) and (3) and (4). Then u
in W™ is a solution' of Au = o if and only if°
(Av,v—u) >0

for all v in Wi such that v = u on a neighbourhood of bdy (0).
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Progf. Suppose Au = o. By (4), if v is in Wie" and v —# is in W"”
with compact support,

Av,v—u) > An,v—u)=o0.

Conversely, suppose that for » in W"”, o = # on a neighbourhood of
bdy (o), and
(Av,v—u) >o.
Take w in W"” with compact support, # in (0, 1), and set v, = » -+ #w.
Since (Av,,v,—2) > o; if follows that

(Ay, ,w) >o0.

Since v, converges to # and A is continuous by (2) and (3) we have
' (Au ,w) >0,
which implies Az = o.

LEMMA 4. Swuppose (2), (3) and (4) hold, and A is given by (1). Let u, be
a sequence of functions satisfying Au, = o. Let u be in Wi (0) and let o'
be a neighbourhood of bdy (0). Suppose u, converges to u in Wi (o', and u,
converges weakly to u in W (0") for o' compactly contained in o. Then Au = o.

Proof. Take v in W"” such that v = % on a neighbourhood of bdy (o).
Take an open set o' compactly contained in o which contains the support of
v —u and the complement of o'’. Let f:0 — [0, 1] be smooth, its support
contained in 0"/, and equal to 1 on a neighbourhood of the boundary of o'.
Let v, = v + (u, —u) f.

By Lemma 3, since A», = 0 and v, = %, on a neighbourhood of bdy (o),

(Avn)yn—%n)zo'

Since %, converges weakly to « in Wi." (0"), and , converges to v in W™ (0"
we have
(Av,v—u) >o0.

By Lemma 3 again, Az = o0 on o', and hence on o.

LEMMA 5. Suppose m < 2. Suppose (2), (3) and (7) hold in a neighbourhood
o' of bdy (0).

Let u, be a sequence of real valued functions satisfying Au, = 0, A given
by (1).  Suppose u, is convergent in L®(0"), and bounded in Wi (o).
Then wu, s convergent in WL (o).

Proof. Let y >0 be in Cy’(0'"). By Holder’s inequality (here we need
m < 2) we have:

(10) J e — " < f (sup (][22 )"

—m)[2

([ e Clel s Ton = e — 2™
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Since #, is bounded in Wi (0"), the first integral on the right hand side is
bounded. Since #, is bourlded in Li5 (0'") there is Z > o such that % (x , v) >
>/ >o0 on the support of y. Then by (7) we have

(11) f(sup (t] s [oa )" 2 20— 0, 252

~

S;LJ (@(x,u,uy)—alx,v,v,), u, —uv,)y?

+ff<u,v> (sup (|ua]”, [0a]™) + ) 92 .

Since #, is convergent in L%, the second integral converges to 0. By (11)
if m = 2 or'(10) and (11) if 7 < 2, we have to show that the first integral on
the right hand side of (11) converges to o.

Since (Au—Av, (u —v) ¥%) = o, we have

(12) @t ) — a0, e — 0 2

< [laGu,m)—aG,v,0] 2] 25 [u—0|

%

15w, wy =00 0] 52 [l

Using (1) and the convergence of #, in L%, the right hand side of (12)
converges to O.

LEMMA 6. Swuppose that m is not necessarily < 2. Suppose (2) and (3)
hold, and A is given by (1). Suppose that w, is a sequence of real valued functions
satisfying Awu, = 0. Suppose u, is comvergent in Li.(0") and bounded in
Wi (0'") where o' is a neighbourhood of bdy (0) on which (8) holds. Then u,
is convergent tn Wi (o).

Proof. Let y,u,v be as in Lemma 5. Let F be the set where
|n,| <e|v,|,e>o0 to be chosen. By (8)

f;vxl”‘yz < d_lf(d(x V) 5 0 97
F F
<47 (@) — A, ), o)

+d"f‘|uxl’"*1<|vx| + |u.])

F

+ d—lfcm]m-l 2] 2.

F
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Taking e small we have the existence of C depending on ¢, d such that

-f[vxl’"yz gcf(d(x o) —d(r,w) v —u) 5t

It follows that there is another constant C such that

(13) [lux—vxl’”ﬁgc [<d<x,ux>—d<x,vx>,ux—wﬁ.

Similarly if G is the set where |v,| <e|#,| then

<I4> ('ux—_vxlmyzgc ’ <d<x) %x>wd<x ) le> ) %x—vx>y2'

Let E be the complement of F and G, that is the set where ]ux[ == 0,
|v.| == o0, and

(15) eloe| < |ue| < e o
We take ™ powers in (8) to give on E
|2t,— v, "< C (sup (Jo, |*™", |0 ") (A(x , ;) — d(x,2,), wy—v,)""

By Cauchy’s inequality this gives

1/2

(16) flm——vxl”?jﬂgc<f(d(x,ux)—d(x,yx),%x_wyz)
. o 9 (e o0 a— xm_l 1/2.
(J (sup (o "™, o 77" (d (%, 20) — d( Y, e —v) y2>

We obtain a bound for the second integral on the right hand side of (16)
by using (8) and (15). We now show the first integral on the right converges
to zero.

(17) {(d(x, uy) —d(x,v,), u,—v,)92 < {(d(x,uv) —d(x,v,),%,—v,)y?

E 0

+f|c<x,u>——c<x,v>l (s v) 32

< ‘ f(a(x,u,ux)—~—a(x,v,vx) U V) Y2

The first integral on the right converges to 0 by (12). The second converges
to o because of convergence of #, in Li,.
Since (17) converges to zero, so does (16), and similarly (13) and (14).

1,m

Hence, u, converges in Wi (0.
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LEMMA 7. Suppose (2), (6) and (9) hold and A is given by (1). Suppose M
is a real number, Ml = o, and u, is an increasing sequence of functions satisfying
Au, = 0 and u, > —M on o. Suppose there is a point y in o such that u,(y)
is bounded. Then u, is convergent in L.

Proof. We shall refer to Trudinger [4] for much of this proof. We may
assume M > —2#,. Let # be an element of the sequence #,. Let y>o0
be in Ci°(K), K being a cube in 0. Let p be > o.

By Serrin [3] # is in L*(K). It then follows that. ym(u +M)” is in W§™.
(Az , y" (u +M)") = o gives

o =f(a(x, W, 1), ) plu =M y" 4 "(a(x,u  21) V) 1y (- M -

+ (é(x o, )y (MY
By (9), this implies

’/' luxlm<u +M>z§—-1ym S Cd_l {lulm(u_{__M)p-—lym
4—d‘1p‘{[c<lur”*-%luxW“bvnM”*<u—thP

_l_d-lp—-l (£<I%]m—l+ qulm—l)ym<% _|_M>15

v

By Young’s inequality we take the terms in |#,| to the left hand side,
and use the fact # +M >, to give

(18) f]”x\m(%—l—M)p_lyméC(’c,d) (I—l—p“l)m'} "+ 1y |™) (MY 271
Letting w = u +M (18) becomes
‘[[wxlmwpglym <C@a+p ' "+ |y,

which is the formula (1.20) of [4].

The conclusion of Theorem 1.3 of [4], follows for w by repeating the
Proof of' this Theorem from (1.20) onward. That is, for v >m —1

I max w < co~ " {|w .
(19) nax @ < o ol gy

Since (6) implies that w =%+ M is a positive supersolution, by [4,
Theorem 1.2] for v <# (m — 1) (n —m)™" we obtain

(20) e~ e || < ¢ minw.
vsK(2p) K (o)
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We note #,(y) is defined since the #, are continuous by Ladyzhenskaya
and Ural'tseva [2, Theorem 1.1, page 251]. Since #,(y) are bounded so is min
(#,) over o' containing y. If o' is compactly contained in o then (19) and
(20) imply the existence of C such that

max (2,4 M) < C min (%,+ M).
0 %

Since #, is bounded in L%(0), by [2, Theorem 1.1, page 251] u, is
bounded in Cy, ¢/(0") for o’ compactly contained in o. Consequently %, is
compact in the space of continuous functions on ¢/(0), and since it is an
increasing sequence it converges uniformly on ¢/(0").
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