ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAVEL DOKTOR

Su alcune relazioni tra una funzione armonica e la funzione coniugata

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.5, p. 617–621. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_5_617_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Su alcune relazioni tra una funzione armonica e la funzione coniugata. Nota di Pavel Doktor, presentata (*) dal Corrisp. G. Stampacchia.

SUMMARY. — On some relations between a harmonic function and its conjugate.

Nel presente lavoro si tratta dei rapporti fra una funzione u in due variabili, reale ed armonica, e la funzione v coniugata della u. Le funzioni u, v soddisfano allora le condizioni

(I)
$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} \quad , \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

(condizioni di Cauchy–Riemann) in un insieme aperto $\Omega \subset R_2$ che si assume limitato e semplicemente connesso con frontiera abbastanza buona. Diciamo che Ω ha una frontiera lipschitziana (o che $\Omega \in \mathfrak{M}^{0,1}$) se $\partial \Omega$ è ricoperta con un numero finito di archi aperti su $\partial \Omega$ tali che ognuno di essi ammetta, rispetto ad un opportuno sistema di assi ξ_i , η_i , una rappresentazione del tipo

$$\eta_i = a_i(\xi_i)$$

dove a_i è una funzione definita in un intorno $(-\alpha, \alpha)$ di $\xi_i = 0$ ed ivi lipschitziana. Nel caso che ogni funzione a_i abbia la derivata continua scriviamo $\Omega \in \mathfrak{M}^1$.

Le derivate in (1), (2) si prendono nel senso delle distribuzioni di Schwartz, ma poichè l'operatore di Laplace è ipoellitico esse si possono considerare anche nel senso classico. La condizione che Ω sia semplicemente connesso assicura quindi che la funzione v coniugata delle u esiste sempre (ed è determinata univocamente a meno di una costante additiva).

Sia $W_2^{(1)}(\Omega)$ lo spazio di Sobolev, con la norma

$$\|u\|_1^2 = \|u\|^2 + \left\|\frac{\partial u}{\partial x}\right\|^2 + \left\|\frac{\partial u}{\partial y}\right\|^2$$

dove

(4 b)
$$||u||^2 = ||u||_0^2 = \int_{\Omega} |u(x, y)|^2 dx dy = ||u||_{0,\Omega}^2.$$

Allora è quasi ovvio il seguente

TEOREMA I. Sia $\Omega \subset \mathbb{R}_2$ un aperto limitato e semplicemente connesso con frontiera lipschitziana. Sia $u \in W_2^1(\Omega)$ una funzione armonica.

(*) Nella seduta del 13 maggio 1972.

Allora esiste un'applicazione lineare $v = T_1 u$ tale che $v \in W_2^{(1)}(\Omega)$ sia la funzione coniugata delle u e che

$$\|v\|_{1} \leq N_{1} \|u\|_{1}$$

dove N_1 è una costante dipendente solo da Ω .

Questo Teorema segue immediatamente dalla diseguaglianza di Poincaré

Nel successivo Teorema 2 si tratta il caso della funzione u meno regolare « vicino alla frontiera ». Si suppone che u appartenga solo a $L_2(\Omega)$, ma nondimeno assuma valori su $\partial\Omega$ nel senso che u sia la soluzione generalizzata del problema al contorno.

(7)
$$\Delta u = 0 \text{ in } \Omega$$
 , $u = \varphi$ su $\partial \Omega$

dove φ appartiene a $L_2(\partial\Omega)$.

Diciamo che u è la soluzione di (7) (vedi [1] o anche [2]) se qualsiasi successione u_n di funzioni armoniche di $W_2^{(1)}(\Omega)$ le cui tracce tendono verso φ (rispetto alla norma

(8)
$$|\varphi|_0^2 = \int_{\partial\Omega} |\varphi|^2 d\mu$$

tendono verso u (rispetto alla norma (4 b)).

Utilizzando la diseguaglianza di Hellinger-Toeplitz

$$\|u_n\|_0 \le C |u_n|_0$$

e le proprietà ben note delle funzioni armoniche otteniamo che in tal caso le funzioni u_n insieme con tutte le derivate, tendono verso u uniformemente in ogni compatto di Ω ; perciò u risulta armonica.

TEOREMA 2. Sia $\Omega \subset \mathbb{R}_2$, $\Omega \in \mathfrak{M}^{0,1}$ e semplicemente connesso. Sia $g \in L_2(\partial \Omega)$ e sia $u \in L_2(\Omega)$, la soluzione di (7) (con g invece di φ).

Allora esiste un'applicazione lineare $h=T_2$ g tale che $h\in L_2(\partial\Omega)$ e la funzione v soluzione di (7) con $\varphi=h$ sia la funzione coniugata delle u. La funzione h soddisfa la diseguaglianza

$$\left|h\right|_{0} \leq N_{2} \left|g\right|_{0}$$

dove N_2 dipende solo da Ω .

Dimostrazione. In [3] è stato dimostrato che le tracce dei polinomi armonici costituiscono un sottoinsieme denso nello spazio $L_2(\partial\Omega)$. Basta mostrare quindi il Teorema 2 per i polinomi ed estendere l'applicazione T_2 per continuità su tutto $L_2(\partial\Omega)$; la convergenza, essendo localmente continua, mantiene le condizioni (2).

Sia allora u un polinomio armonico e sia v il polinomio armonico coniugato delle u tale che

$$\int_{\partial\Omega} v \, \mathrm{d}\mu = 0.$$

Sia $z_0 \in \partial \Omega$ un punto fisso. Definiamo per

(12)
$$G(z) = \int_{\Gamma(z)} v \, d\mu$$

dove $\Gamma(z)$ è l'arco su $\partial\Omega$ che congiunge il punto z_0 con il punto z (nella direzione positiva). La condizione (11) insieme col fatto che $\Omega\in\mathfrak{M}^{0,1}$ è semplicemente connesso assicura che questa funzione sia determinata univocamente per ogni $z\in\partial\Omega$. Di più, otteniamo facilmente $G\in W_2^{(1)}(\partial\Omega)$. Qui $W_2^{(1)}(\partial\Omega)$ è lo spazio delle funzioni definite su $\partial\Omega$ e tali che $G_i(\xi_i)=G(\xi_i$, $a_i(\xi_i))\in W_2^{(1)}(-\alpha$, α) per ogni sistema di assi descritto nella definizione di $\mathfrak{M}^{0,1}$, con la norma

$$|||G|||^2 = \sum_{i} ||G_{i}||_{1,(-\alpha,\alpha)}^2.$$

Ponendo (con opportuna scelta di $\varepsilon = \pm 1$)

$$\frac{\mathrm{dG}}{\mathrm{d}t}\left(\xi_{i}, a_{i}\left(\xi_{i}\right)\right) = \varepsilon \frac{\mathrm{dG}_{i}}{\mathrm{d}\xi_{i}}\left(\xi_{i}\right)\left\{1 + \left[a'_{i}\left(\xi_{i}\right)\right]^{2}\right\}^{-1/2}$$

si vede immediatamente che la norma (13) è equivalente a

(15)
$$|G|_1^2 = |G|_0^2 + \left| \frac{dG}{dt} \right|_0^2$$

e che per ogni funzione $f \in C^1(\overline{\Omega})$ vale quasi ovunque (nel senso della misura superficiale μ)

(16)
$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} = t_x \frac{\partial f}{\partial x} + t_y \frac{\partial f}{\partial y}$$

dove $\frac{\partial f}{\partial t}$ è la derivata tangenziale $(t = (t_x, t_y)$ è il vettore tangente). Per G otteniamo le condizioni:

$$\frac{\mathrm{dG}}{\mathrm{d}t} = v$$

$$|G|_{1} \leq C |v|_{0}.$$

Sia $U \in W_2^{(1)}(\Omega)$ la funzione armonica tale che U = G su $\partial \Omega$. Dal Teorema I.I di [I], Capitolo 5 (vedi anche [2]) segue immediatamente la esistenza di una derivata normale (in senso debole) $\frac{\partial U}{\partial \nu} \in L_2(\partial \Omega)$ tale che

(18)
$$\left| \frac{\partial \mathbf{U}}{\partial \mathbf{v}} \right|_{0} \leq \mathbf{C}_{1} \left| \mathbf{U} \right|_{1} \leq \mathbf{N}_{2} \left| \mathbf{v} \right|_{0}$$

(19)
$$\int_{\partial\Omega} u \, \frac{\partial U}{\partial \nu} \, d\mu = \int_{\partial\Omega} \frac{du}{d\nu} \, U \, d\mu.$$

Dalla (2) segue:

$$\frac{\partial u}{\partial v} = \frac{\partial v}{\partial t}$$
.

Di qui e da (17 a) viene

$$\int_{\partial \Omega} \frac{\partial u}{\partial \nu} G d\mu = \int_{\partial \Omega} \frac{\partial v}{\partial t} G d\mu = -\int_{\partial \Omega} v \frac{\partial G}{\partial t} d\mu = -|v|_{0}^{2}$$

perché

$$\label{eq:definition} \nu G \in W_2^{(1)}(\partial\Omega) \quad \text{ , } \quad o = \int\limits_{\partial\Omega} \frac{\mathrm{d}\, \langle \nu G \rangle}{\mathrm{d}t} \; \mathrm{d}\mu = \int\limits_{\partial\Omega} \left(\frac{\mathrm{d}\nu}{\mathrm{d}t} \; G \, + \nu \, \frac{\mathrm{d}G}{\mathrm{d}t} \right) \mathrm{d}\mu \, .$$

Utilizzando allora la formula di Green (19), otteniamo finalmente

$$|v|_0^2 = -\int_{\partial \Omega} u \frac{\partial U}{\partial v} d\mu \le N_2 |v|_0 |u|_0$$

cioè la diseguaglianza (10).

Nel caso che la funzione u appartenga a $L_2(\Omega)$, I. Babuška ha mostrato un Teorema simile per Ω più regolare. Servendosi di un risultato di Kellog si può dimostrare lo stesso Teorema sotto le condizioni più deboli:

TEOREMA 3. Sia $\Omega \subset R_2$, $\Omega \in \mathfrak{M}^{1,\rho}$ (0 < ρ < 1) semplicemente connesso. Sia $u \in L_2(\Omega)$ una funzione armonica. Allora esiste l'applicazione lineare T_3 tale che $v = T_3$ $u \in L_2(\Omega)$ è una funzione coniugata delle v tale che v (x_0 , y_0) = 0, dove (x_0 , y_0) $\in \Omega$ è un punto fisso. Quest'applicazione soddisfa

$$||v||_{0} \leq N_{3} ||u||_{0}$$

dove N_3 dipende solo da Ω e (x_0, y_0) .

La dimostrazione di questo Teorema si trova nel lavoro [4] di I. Babuška (Teorema 4 di quell'articolo; vedi anche [5]) per Ω un po' più regolare. La dimostrazione ivi data si basa sul seguente risultato (Teorema di Smirnoff): Sia ω un'applicazione conforme del cerchio unitario su un Ω con la frontiera abbastanza regolare. Allora la derivata (complessa) di $\omega(z)$ goda della proprietà $0 < \varepsilon \le |\omega'(z)| \le k < \infty$ (vedi Smirnoff [6]). Il Teorema di Kellog invece (G. M. Goluzin [7], Teorema 6 del § 2, capitolo X) permette di mostrare il Teorema 3 seguendo letteralmente la dimostrazione di Babuška.

Per quanto riguarda il caso di Ω meno regolare anche Babuška ha mostrato ([5]) soltanto l'esistenza dell'applicazione $T_{4,\epsilon}$ lineare da $L_2(\Omega)$ in $L_{2-\epsilon}(\Omega)$ con $0 < \epsilon < \tau$ (per le regioni Ω la cui frontiera consiste di un numero finito di archi abbastanza regolari, con i punti angolosi).

Gli esempi seguenti dimostrano che i Teoremi precedenti non restano veri se Ω non appartiene a $\mathfrak{M}^{0,1}$:

Usando le coordinate polari

$$(21) x = \rho \cos \varphi , \quad y = \rho \sin \varphi$$

poniamo $\Omega = \{ \rho, \phi \mid 0 < \rho < 1, --\rho^{\omega} < \phi < \rho^{\omega} \}$, dove ω è la costante positiva. Si vede facilmente che la funzione $v = \rho^{-\alpha} \cos \alpha \phi$, essendo la parte immaginaria della funzione complessa $iz^{-\alpha}$, è la funzione coniugata della funzione $u = \rho^{-\alpha} \sin \alpha \phi$. Si vede anche che $\Omega \in \mathfrak{M}^{0,\frac{1}{\omega+1}}$ (cioè Ω ha la frontiera $\frac{1}{\omega+1}$ — hölderiana). Otteniamo facilmente

$$||u||_{0}^{2} = \int_{0}^{1} \rho^{-(2\alpha - 1 - 3\omega)} \frac{2 \alpha \rho^{\omega} - \sin 2 \alpha \rho^{\omega}}{2 \alpha \rho^{3}} \alpha \rho$$

$$||v||_{0}^{2} = \int_{0}^{1} \rho^{-(2\alpha - 1\omega)} \left[\mathbf{I} + \frac{\sin 2 \alpha \rho^{\omega}}{2 \alpha \rho^{\omega}} \right] d\rho$$

$$||u||_{0}^{2} = 2 \int_{0}^{1} \rho^{-2(\alpha - \omega)} \frac{\sin^{2} \alpha \rho^{\omega}}{\rho^{2\omega}} \sqrt{\mathbf{I} + \omega^{2} \rho^{2}} d\rho + \int_{-1}^{1} \sin^{2} \alpha \rho d\rho$$

$$||v||_{0}^{2} = 2 \int_{0}^{1} \rho^{-2\alpha} \cos^{2} \alpha \rho^{\omega} \sqrt{\mathbf{I} + \omega^{2} \rho^{2\omega}} d\rho + \int_{-1}^{1} \cos^{2} \alpha \rho d\rho.$$

Scegliendo la costante α , ω otteniamo vari esempi:

(23)
$$\omega > 0$$
 , $\alpha = \frac{1}{2} : u \in L_2(\Omega)$, $u \in L_2(\partial\Omega)$, $v \in L_2(\Omega)$, $v \notin L_2(\partial\Omega)$

$$(24) \quad \omega > \text{I} \quad , \ \alpha = \text{I} + \frac{\omega}{2} : u \in L_2(\Omega) \ , \ u \in L_2(\partial\Omega) \ , \ v \not\in L_2(\partial\Omega) \ , \ v \not\in L_2(\Omega)$$

$$\begin{array}{ll} (\mathbf{25}) & \omega > o \ , \ \alpha = \min \left(\mathbf{1} + \frac{\omega}{2} \, , \, \frac{\mathbf{1}}{2} + \omega \right) \colon u \in L_2(\Omega) \ , \ u \not\in L_2(\partial\Omega) \, , \\ \\ v \not\in L_2(\Omega) \ , \ v \not\in L_2(\partial\Omega) \, . \end{array}$$

BIBLIOGRAFIA

- [1] J. NEČAS, Les méthodes directes en théorie des équations elliptiques. Prague 1967.
- [2] J. NEČAS, Sulle soluzioni delle equazioni di tipo ellittico (in russo), «Czech. Mat. Journ. », 10, 283-298 (1960).
- [3] P. DOKTOR, La soluzione approssimativa del problema di Dirichlet (in russo), «Čas. Pest. Mat. », 89, 390-401 (1964).
- [4] I. BABUŠKA, Una osservazione su una soluzione del problema biarmonico (in ceco), «Čas. Pěst. Mat.», 79, 41-63 (1964).
- [5] I. BABUŠKA, Su una proprietà delle funzioni armoniche (in russo), «Czech. Mat. Journ.», 5, 220-233 (1955).
- [6] V. SMIRNOFF, Über die Ränderzuordnung bei konformen Abbildung, «Mathem. Ann.», BD 107 (1933).
- [7] G. M. GOLUZIN, Teoria geometrica delle funzioni di variabile complessa (in russo), Mosca 1966.