Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Francois Sigrist, Ulrich Suter

On symplectic Stiefel manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 52 (1972), n.4, p. 493-497.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1972_8_52_4_493_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - On symplectic Stiefel manifolds. Nota di François Sigrist e Ulrich Suter, presentata ${ }^{(*)}$ dal Socio B. Segre.

Abstract

Riassunto. - In questa Nota preventiva vengono studiate certe rappresentazioni fra varietà simplettiche di Stiefel.

I. Introduction

Let $\mathrm{S} p(n)$ be the symplectic group and $\mathrm{W}_{n, k}=\mathrm{S} p(n) / \mathrm{S} p(n-k)$. the symplectic Stiefel manifold. For $k>l$, one has an obvious map $p: \mathrm{W}_{n, k} \rightarrow \mathrm{~W}_{n, l}$, which is a fiber map with fiber $\mathrm{W}_{n-l, k-}{ }^{l}$. The purpose of this paper is to give a complete description of the values of n, k and l for which the map p has a cross-section. Details will appear elsewhere.

The corresponding problem for the orthogonal Stiefel manifolds is already completely solved (Adams, 1962; Eckmann-Whitehead, 1963), as is the unitary case (Adams-Walker, 1965; Suter, 1966), the most famous contribution being Adams' solution of the vector field problem on spheres [r]. For the symplectic Stiefel manifolds, the explicit results previously known can be stated as follows:
(i) The map $p: \mathrm{W}_{n, 2} \rightarrow \mathrm{~W}_{n, 1}=\mathrm{S}^{4 n-1}$ has a cross-section if and only if n is a multiple of 24. This result is due to I. M. James [7].
(ii) For $k>l \geq 2$, the map $p: \mathrm{W}_{n, k} \rightarrow \mathrm{~W}_{n, l}$ does not have a crosssection. For this result see [9, page 203].

We shall dispose of the remaining cases, i.e. the cases with $l=\mathrm{I}, k>2$, by the following Theorem.

2. Main Theorem

For any positive integer q and any prime p let $\nu_{p}(q)$ be the exponent of p in the prime power decomposition of q. We then have:

Theorem. The symplectic Stiefel fibring $p: \mathrm{W}_{n, k} \rightarrow \mathrm{~W}_{n, 1}$ has a crosssection if and only if one of the following two equivalent conditions holds:
(I) For each integer j with $0 \leq j \leq k$-I the coefficient a_{j} of z^{j} in

$$
\left[\frac{2}{\sqrt{z}} \operatorname{ARSh} \frac{\sqrt{z}}{2}\right]^{2 n}=\sum_{j=0}^{\infty} a_{j} z^{j}=\mathrm{I}-\frac{n}{12} z+\cdots
$$

is an integer if j is even and an even integer if j is odd.
(*) Nella seduta dell'8 aprile 1972.
(II) n is a multiple of the integer c_{k}, called quaternionic James number, which is defined by its decomposition into prime powers as follows:

$$
\begin{array}{lr}
\nu_{2}\left(c_{k}\right)=\max _{s}\left(2 k-\mathrm{I}, 2 s+\nu_{2}(s)\right), \mathrm{I} \leq s \leq k-\mathrm{I} \\
\nu_{p}\left(c_{k}\right)=\max _{t}\left(t+\nu_{p}(t)\right), & \mathrm{I} \leq t \leq\left[\frac{2 k-\mathrm{I}}{p-\mathrm{I}}\right], p \text { odd }<2 k \\
\nu_{p}\left(c_{k}\right)=\mathrm{o}, & p \text { odd }>2 k .
\end{array}
$$

We observe in particular that c_{k} is divisible by all primes less than $2 k$. The number c_{2} is equal to 24 , this is James' result mentioned above.

In the course of the proof of our Theorem we show that c_{k} is either equal to $b_{2 k}$ or to $\mathrm{I} / 2 b_{2 k}$, where $b_{2 k}$ is the (known) complex James number. A closer study of the relation between c_{k} and $b_{2 k}$ shows: For k odd, c_{k} is always equal to $\mathrm{I} / 2 b_{2 k}$. On the other hand if k is even, there are cases with $c_{k}=b_{2 k}$ and such with $c_{k}=\mathrm{I} / 2 b_{2 k}$; the distribution turns out to be rather irregular, however for approximatively 73% of all cases we have $c_{2 m}=b_{4 m}$.

3. Outline of the Proof

The Theorem is proved using techniques developed by Adams and Walker in the unitary case [3].

Let $\mathrm{KO}(\mathrm{X})$ resp. $\mathrm{KU}(\mathrm{X})$ be real resp. complex K -Theory of a finite CW-complex X, and let J: KO (X) $\rightarrow \mathrm{J}(\mathrm{X})$ be Atiyah's J-homomorphism [4]. By HP^{k-1} we denote the ($k-\mathrm{I}$)-dimensional quaternionic right projective space. The following two Theorems are then the starting point for our study.

Theorem [James, 6]. There exists a positive integer c_{k}, such that the Stiefel fibring $p: \mathrm{W}_{n, k} \rightarrow \mathrm{~W}_{n, 1}$ has a cross-section if and only if n is a multiple of c_{k}. (The integer c_{k} is the so called quaternionic James number).

Theorem [Atiyah, 4]. Let $\alpha \in \mathrm{KU}\left(\mathrm{HP}^{k-1}\right)$ be the canonical 2-dimensional complex Hopf-bundel and let $r \alpha \in \mathrm{KO}\left(\mathrm{HP}^{k-1}\right)$ be its realification. The quaternionic James number c_{k} is the order of the element $\mathrm{J}(r \alpha)$ in $\mathrm{J}\left(\mathrm{HP}^{k-1}\right)$.

To determine the order of $\mathrm{J}(r \alpha)$ we use the groups $\mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right)$ resp. $\mathrm{J}^{\prime}\left(\mathrm{HP}^{k-1}\right)$ as defined in [3], which constitute a computable upper resp. lower bound of the group $\mathrm{J}\left(\mathrm{HP}^{k-1}\right)$. We prove:

Lemma i. For the space HP^{m} one has the isomorphisms

$$
\mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{m}\right) \stackrel{\theta^{\prime \prime}}{\cong} \mathrm{J}\left(\mathrm{HP}^{m}\right) \stackrel{\theta^{\prime}}{\cong} \mathrm{J}^{\prime}\left(\mathrm{HP}^{m}\right)
$$

Proof. The first isomorphism follows from the now proved Adams conjecture [Quillen, 8]. Working with the cofibration $\mathrm{HP}^{m-1} \rightarrow \mathrm{HP}^{m} \rightarrow \mathrm{~S}^{4 m}$ one gets $\theta^{\prime}{ }_{\circ} \theta^{\prime \prime}: \mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{m}\right) \cong \mathrm{J}^{\prime}\left(\mathrm{HP}^{m}\right)$ by induction on m, in the same way as in [3, Lemma 6.I].

The above Lemma enables us to work with $\mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right)$ or $\mathrm{J}^{\prime}\left(\mathrm{HP}^{k-1}\right)$ instead of $\mathrm{J}\left(\mathrm{HP}^{k-1}\right)$, whatever is more appropriate in a given context. We first deal with $\mathrm{J}^{\prime}\left(\mathrm{HP}^{k-1}\right)$.

By definition [3] we have $\mathrm{J}^{\prime}(\mathrm{X})=\mathrm{KO}(\mathrm{X}) / \mathrm{V}(\mathrm{X})$, where $\mathrm{V}(\mathrm{X})$ is the subgroup of elements $\delta \in \mathrm{KO}(\mathrm{X})$, such that $\operatorname{sh}(\delta)=\operatorname{ch} \circ c(\mathrm{I}+\gamma)$ for some element $\gamma \in \widetilde{\mathrm{KO}}(\mathrm{X})$. (Here $s h: \mathrm{KO}(\mathrm{X}) \rightarrow \mathrm{I}+\sum_{s>0}^{\infty} \mathrm{H}^{4 s}(\mathrm{X} ; \mathrm{Q})$ is the characteristic class corresponding to the power series of $\frac{e^{y / 2}-e^{-y / 2}}{y}=$ $=\frac{2 \mathrm{Sh}(y / 2)}{y}, c: \mathrm{KO}(\mathrm{X}) \rightarrow \mathrm{KU}(\mathrm{X})$ is complexification and $c h: \mathrm{KU}(\mathrm{X}) \rightarrow$ $\rightarrow \mathrm{H}^{*}(\mathrm{X} ; \mathrm{Q})$ is the chern character $)$. The order c_{k} of the element $\mathrm{J}^{\prime}(r \alpha)$ in $\mathrm{J}^{\prime}\left(\mathrm{HP}^{k-1}\right)$ is therefore the smallest positive integer n for which

$$
\operatorname{sh}(-n \cdot r \alpha)=[\operatorname{sh}(r \alpha)]^{-n} \in \operatorname{ch} \circ c\left(\mathrm{KO}\left(\mathrm{HP}^{k-1}\right)\right) .
$$

(We regard - n for convenience). The canonical map

$$
g: \mathrm{CP}^{2 k-1} \rightarrow \mathrm{HP}^{k-1}
$$

where $\mathrm{CP}^{2 k-1}$ is complex projective space, induces an injection in ordinary cohomology, and we obtain, computing $\mathrm{KO}\left(\mathrm{HP}^{k-1}\right) \xrightarrow{c} \mathrm{KU}\left(\mathrm{HP}^{k-1}\right) \xrightarrow{g!}$ $\mathrm{KU}\left(\mathrm{CP}^{2 k-1}\right)$, the following two results:
(i) The image of the map

$$
g^{*} \circ c h \circ c: \mathrm{KO}\left(\mathrm{HP}^{k-1}\right) \rightarrow \mathrm{H}^{*}\left(\mathrm{CP}^{2 k-1} ; \mathrm{Q}\right)=\mathrm{Q}[y]\left(\bmod y^{2 k}\right)
$$

is the free abelian group generated by I, $2[2 \operatorname{Sh}(y / 2)]^{2},[2 \operatorname{Sh}(y / 2)]^{4}, \cdots$, $\cdots, \varepsilon_{j}[2 \operatorname{Sh}(y / 2)]^{2 j}, \cdots, \varepsilon_{k-1}[2 \operatorname{Sh}(y / 2)]^{2(k-1)}\left(\bmod y^{2 k}\right)$, where $\varepsilon_{j}=\mathrm{I}$ if j is even and $\varepsilon_{j}=2$ if j is odd.
(ii) $g^{*} \circ \operatorname{sh}(-n \cdot r \alpha)=[\operatorname{sh} \circ g!(r \alpha)]^{-n}=\left[\frac{2 \operatorname{Sh}(y / 2)}{y}\right]^{-2 n}\left(\bmod y^{2 k}\right)$.

In $Q[y]\left(\bmod y^{2 k}\right)$ one has a unique relation

$$
\left(\mathrm{R}_{n}\right):\left[\frac{y}{2 \operatorname{Sh}(y / 2)}\right]^{2 n}=\sum_{j=0}^{k-1} q_{j} \cdot \varepsilon_{j}[2 \operatorname{Sh}(y / 2)]^{2 j}\left(\bmod y^{2 k}\right)
$$

where $q_{0}=\mathrm{I}, q_{1}, \cdots, q_{k-1}$ are rational numbers depending on n, and consequently we deduce:

Lemma 2. The order c_{k} of the element $\mathrm{J}^{\prime}(r \alpha)$ in $\mathrm{J}^{\prime}\left(\mathrm{HP}^{k-1}\right)$ is the smallest integer n, for which the coefficients $q_{0}=1, q_{1}, \cdots, q_{k-1}$ in $\left(\mathrm{R}_{n}\right)$ are integers.

By an obvious transformation of power series we derive from Lemma 2 part I of our Theorem. To get part II we work with $\mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right)$ ard prove:

Lemma 3. The quaternionic James number c_{k} is either equal to the complex James number $b_{2 k}$ or to $\mathrm{I} / 2 b_{2 k}$.

Proof. We first show, that the element $\mathrm{J}_{\mathrm{C}}^{\prime \prime}(\alpha) \in \mathrm{J}_{\mathrm{C}}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right)$ has the same order as $\mathrm{J}^{\prime \prime}(r \beta) \in \mathrm{J}^{\prime \prime}\left(\mathrm{CP}^{2 k-2}\right)$; here $r \beta$ is the realification of the canonical complex linebundle β over the complex projective space $\mathrm{CP}^{2 k-2}$. One has $\mathrm{KU}\left(\mathrm{HP}^{k-1}\right)=\mathbf{Z}[\sigma]\left(\bmod \sigma^{k}\right)$, where $\sigma=\alpha-2$. On the other hand one knows, that $\mathrm{KO}\left(\mathrm{CP}^{2 k-2}\right)=\mathbf{Z}[\omega]\left(\bmod \omega^{k}\right)$, where $\omega=r \beta-2$ (see [3]). The homomorphism $g_{1}^{*}: \mathrm{KU}\left(\mathrm{HP}^{k-1}\right) \rightarrow \mathrm{KU}\left(\mathrm{CP}^{2 k-2}\right)$ induced by $\mathrm{CP}^{2 k-2} \mathrm{C}$ $\mathrm{CP}^{2 k-1} \xrightarrow{g} \mathrm{HP}^{k-1}$ is given by $g_{1}^{*}(\alpha)=\beta+\bar{\beta}$, and the complexification $c: \mathrm{KO}\left(\mathrm{CP}^{2 k-2}\right) \rightarrow \mathrm{KU}\left(\mathrm{CP}^{2 k-2}\right)$ is determined by $c(r \beta)=\beta+\bar{\beta}$. Since both g_{1}^{*} and c are injective and compatible with the ψ-operations one obtains, slightly abusing notation, a ψ-ring isomorphism $c^{-1}{ }_{\circ} g_{1}^{*}=\mathrm{A}: \mathrm{KU}\left(\mathrm{HP}^{k-1}\right) \cong$ $\cong \mathrm{KO}\left(\mathrm{CP}^{2 k-2}\right)^{(1)}$. With the induced isomorphism $\mathrm{J}^{\prime \prime}(\mathrm{A}): \mathrm{J}_{\mathrm{C}}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right) \cong$ $\cong \mathrm{J}^{\prime \prime}\left(\mathrm{CP}^{2 k-2}\right)$ (see [2]) we deduce: The order of $\mathrm{J}_{\mathrm{C}}^{\prime \prime}(\alpha)$ is equal to the order of $\mathrm{J}^{\prime \prime}(r \beta)$ which is $b_{2 k-1}$ [3]; by [5, p. 344] one has $b_{2 k-1}=b_{2 k}$. The homomorphism $\mathrm{J}^{\prime \prime}(r): \mathrm{J}_{\mathrm{C}}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right) \rightarrow \mathrm{J}^{\prime \prime}\left(\mathrm{HP}^{k-1}\right)$ (see [3, Appendix]) maps $\mathrm{J}_{\mathrm{C}}^{\prime \prime}(\alpha)$ onto $\mathrm{J}^{\prime \prime}(r \alpha)$ and it follows, that the order of $\mathrm{J}^{\prime \prime}(r \alpha)$, i.e. the integer c_{k}, divides $b_{2 k}$. But $b_{2 k}$ is a factor of $2 c_{k}$ [6, I.5] and Lemma 3 is proved.

From Lemma 3 we obtain $\nu_{p}\left(c_{k}\right)=\nu_{p}\left(b_{2 k}\right)$ for odd primes $p ; \nu_{p}\left(b_{2 k}\right)$ is explicitly determined in [5, p. 343]. To complete the proof of part II of our Theorem it remains therefore to determine $\nu_{2}\left(c_{k}\right)$. Referring to part I we proceed as follows:

The function $f(z)=\left[\frac{2}{V \bar{z}} \operatorname{ARSh} \frac{V \bar{z}}{2}\right]^{2 n}$ satisfies the functional equation

$$
f(z)=\left(1+\frac{z}{4}\right)^{n} \cdot f\left(4 z+z^{2}\right)
$$

This implies the following relation for the coefficients $a_{0}=1, a_{1}, a_{2}, \cdots, a_{j}, \cdots$ of the power series of f :

$$
\begin{equation*}
\binom{n}{j}+\sum_{i=1}^{j-1}\binom{n+i}{j-i} 4^{2 i} \cdot a_{i}=4^{j}\left(\mathrm{I}-4^{j}\right) \cdot a_{j}, j=\mathrm{I}, 2, \cdots . \tag{I}
\end{equation*}
$$

In other words: The coefficients a_{1}, a_{2}, \cdots are the solution of the above system of linear equations, and c_{k} is the smallest positive integer n, for which the first k - I elements a_{1}, \cdots, a_{k-1} of this solution are alternatively even and integral.

Working with (I) and proving some simple number-theoretical Lemmas one shows now by induction on k, that $\nu_{2}\left(c_{k}\right)$ is as stated in our main Theorem.
(1) This elegant way of deriving the ψ-ring isomorphism $\mathrm{KU}\left(\mathrm{HP}^{k-1}\right) \cong \mathrm{KO}\left(\mathrm{CP}^{2 k-2}\right)$ was communicated to us by J.F. Adams.

References

[I] Adams J.F., Vector fields on spheres, "Ann. of Math.», 75, 603-632 (1962).
[2] Adams J.F., On the groups J(X). II, «Topology», 3, 137-171 (1965).
[3] Adams J.F. and Walker G., Complex Stiefel Manifolds, «Proc. Camb. Phil. Soc.», 6r, 8I-103 (1965).
[4] Аtiyah M.F., Thom complexes, «Proc. London Math. Soc.», ir, 291-310 (196i).
[5] Atiyah M.F. and Todd J.A., On complex Stiefel Manifolds, "Proc. Camb. Phil. Soc.», 56, 342-353 (1960).
[6] James I.M., Cross-sections of Stiefel Manifolds, « Proc. London Math. Soc. », 8, 536-547 (1958).
[7] James I.M., Spaces associated with Stiefel Manifolds, «Proc. London Math. Soc.», 9, 115-140 (1959).
[8] Quillen D., The Adams Conjecture, "Topology», io, 67-80 (1971).
[9] Suter U., Die Nicht-Existenz von Schnittflächen komplexer Stiefel-Mannigfaltigkeiten, «Math. Z.》, II3, 196-204 (1970).

