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Geometria. — On symplectic Stiefel manifolds. Nota di Frangois
SigrisT e ULRICH SUTER, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — In questa Nota preventiva vengono studiate certe rappresentazioni
fra- varieta simplettiche di Stiefel.

I. INTRODUCTION

Let Sp(nz) be the symplectic group and W, ;= Sp (n)/Sp (n — &)
the symplectic Stiefel manifold. For £ >/, one has an obvious map
2 : W, =W, ;, which is a fiber map with fiber W,_;,.?. The purpose
of this paper is to give a complete description of the values of #, £ and /
for which the map p has a cross-section. Details will appear elsewhere.

The corresponding problem for the orthogonal Stiefel manifolds is
already completely solved (Adams, 1962; Eckmann-Whitehead, 1063), as
is the unitary case (Adams-Walker, 1965; Suter, 1966), the most famous
contribution being Adams’ solution of the vector field problem on spheres [1].
For the symplectic Stiefel manifolds, the explicit results previously known
can be stated as follows:

(i) The map p: W, oW, = S**~! has a cross-section if and only
if # is a multiple of 24. This result is due to I. M. James [7].

(ii) For £#>/>2, the map p: W, ;—> W, , does not have a cross-
section. For this result see [9, page 203].

We shall dispose of the remaining cases, i.e. the cases with /=1, £ > 2,
by the following Theorem.

2. MAIN THEOREM

For any positive integer ¢ and any prime p let v, (¢) be the exponent
of p in the prime power decomposition of g. We then have:

THEOREM. The symplectic Stiefel fibring p: W, — W,.1 has a cross-
section if and only if ome of the following two equivalent conditions holds:

(I) For each integer j with o <j < tk—1 the coefficient a; of = in

- 2 V_ 2n

— ARSh -2

Ve T2

00
Al . n
= Zld-Z":I—'“_’—Z‘l_"'
/ 12
7=0

isan integer if jis cven and an even integer if jis odd.

(*) Nella seduta dell’8 aprile 1972.
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(L) n is a multiple of the integer ¢, called quaternionic Sames number,
which is defined by its decomposition into prime powers as follows:

Vo) =max (2&— 1,25+ v (), 1<s<h—1

2k—1
| 2—1
v5(ep) =0, P odd > 2 £.

v, (c) = max @+ v,(2), 1 <<

],p odd < 2k

We observe in particular that ¢, is divisible by all primes less than 2 4.
The number ¢, is equal to 24, this is James’ result mentioned above.

In the course of the proof of our Theorem we show that ¢, is either equal
to by, or to 1/2b,, where by, is the (known) complex James number.
A closer study of the relation between ¢, and 4,, shows: For £ odd, ¢, is always
equal to 1/2 by;. On the other hand if 4 is even, there are cases with ¢ = by,
and such with ¢, = 1/2 &,,; the distribution turns out to be rather irregular,
however for approximatively 739 of all cases we have Com = by .

3. OUTLINE OF THE PROOF

The Theorem is proved using techniques developed by Adams and
Walker in the unitary case [3].

Let KO (X) resp. KU (X) be real resp. complex K-Theory of a finite
CW-complex X, and let J: KO (X) - J(X) be Atiyah’s J-homomorphism
[4]. By HP*' we denote the (£ — 1)~dimensional quaternionic right pro-
jective space. The following two Theorems are then the starting point for
our study.

THEOREM ([James, 6]. There exists a positive integer ¢, such that the
Stiefel fibring p: W, — W1 has a cross-section if and only if n is a multiple
of ¢. (The integer ¢, is the so called quaternionic James number).

THEOREM [Atiyah, 4]. Let « € KU (H Pk‘]) be the canonical 2—dimensional
complex Hopf-bundel and let ro.€ KO (HP*™) be its realification. The qua-
ternionic  [ames number ¢y is the order of the element | (ro) in J (HP*™.

‘To determine the order of J(ra) we use the groups J” (HP*™) resp.
]'(HPk_l) as defined in [3], which constitute a computable upper resp.
lower bound of the group ](HPk_l). We prove:

LEMMA 1. For the space HP" one has the isomorphisms
”n m 3§ m o’ ’ m
J'(HP”) = J(HP™) = J'(HP™).

Progf. The first isomorphism follows from the now proved Adams
conjecture [Quillen, 8]. Working with the cofibration HP”~!— HP” - S*”
one gets 6°06”: J” (HP™) =~ J'(HP™) by induction on , in the same way
as in [3, Lemma 6.1].
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The above Lemma enables us to work with J” (HP*™") or J' (HP*™h
instead of J(HP*™"), whatever is more appropriate in a given context. We
first deal with J'(HP*™).

By definition [3] we have J'(X)= KO (X)/V(X), where V(X) is
the subgroup of elements § € KO (X), such that s4(8) = choc (1 + ) for
some element vy € KO (X). (Here s4#:KO(X)—1-+ X, H" (X;Q) is the

s>0

y/2 —y/2
- o e . . 4 -
characteristic class corresponding to the power series of ¢ _—

=ihy%>_, ¢:KO (X) - KU (X) is complexification and c: KU (X) —
— H*(X; Q) is the chern character). The order ¢, of the element ]’ (ra)
in J'(HP*™") is therefore the smallest positive integer # for which

sh (— n-ra) = [sh (ra)] ™" € choc (KO (HP* ).
(We regard —# for convenience). The canonical map
2:CP¥ 1 HpH!

where CP**™' s complex projective space, induces an #njection in ordinary
cohomology, and we obtain, computing KO (HP*™") ‘- KU (HP* 1 £,
KU (CP*™), the following two results:

(i) The image of the map
g*ochoc: KOHP* - H*(CP*™; Q) = Q [y] (mod *4
is the free abelian group generated by 1,2 [2 Sh (y/z)]z, [2 Sh (y/z)]4,- .

5 [2Sh (¥/2)]7 -+, &1 [2 Sh (9/2)P ™ (mod %), where &, = 1 if ; is
even and ¢; = 2 if j is odd.

(i) g% osh (—mra) = [shog! (ra)] " = ]_2" (mod %)

2 Sh(y/2)
y

In Q[¥] (mod % one has a unique relation

%

|
-

. 2n .
R [ssigm] = Qo2 Sh@/2)]” (mod 4,

J
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where ¢y =1,¢,,"-+,¢, ; are rational numbers depending on 7, and con-
sequently we deduce:

LEMMA 2. The order ¢, of the element J' (ra) in ] (HP*™Y) is the smallest
integer n, for which the coefficients %o=1,91:"""9,, n (R,) are integers.
By an obvious transformation of power series we derive from Lemma 2
part I of our Theorem. To get part II we work with J” (HPFI) and prove:

LEMMA 3. The quaternionic James number c, is either equal to the complex
James number by, or to 12 by,.
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Proof. We first show, that the element J¢ («) € J¢ (HP*™") has the same
order as J”(rB) € J”(CP**7?); here #B is the realification of the canonical
complex linebundle B over the complex projective space CP**™%. One has
KU (HP*™") = Z [6] (mod ¢*), where ¢ = «— 2. On the other hand one
knows, that KO (CP**7%) = Z[w] (mod w¥), where & =78 —2 (see [3]).
The homomorphism £ : KU (HPk_l) — KU (CP%—2) induced by CP*72(
CP¥"! ¢, HP*! is given by & («) =B+ B, and the complexification
¢: KO (CP**™?) — KU (CP**"? is determined by ¢(»8) = B +PB. Since both
&) and ¢ are injective and compatible with the {—operations one obtains,
slightly abusing notation, a ¢-ring isomorphism ¢ og] = A : KUA(HPk_l) o
=~ KO (CP**"® .  With the induced isomorphism J"(A): J&(HP*™) =
= J” (CP**™®) (see [2]) we deduce: The order of J¢ () is equal to the order
of J”(»B) which is bgz_1 [3]; by [5, p- 344] one has by;_; = b3;. The homo-
morphism ] (7) : Je(HP*™") — J"(HP*™") (see [3, Appendix]) maps J¢ («)
onto ] (re&) and it follows, that the order of J” (»a), i.e. the integer ¢,, divides
baz. But b9 is a factor of 2¢; [6, 1.5] and Lemma 3 is proved.

From Lemma 3 we obtain v,(¢;) = v,(é3z) for odd primes p; v, (65)
is explicitly determined in [5, p. 343]. To complete the proof of part II of
our Theorem it remains therefore to determine v, (¢;). Referring to part I
we proceed as follows: \ '

The function f(2) = [72—;— ARSh -V—:—] satisfies the functional equation

@ =1+ s+,

This implies the following relation for the coefficients g =1, a; , a5, - -, a;,- -
of the power series of f:

7=1
3

) ntLN %0 (1 — 4P)ea =
In other words: The coefficients a@;,a,,--- are the solution of the above

system of linear equations, and ¢, is the smallest positive integer #, for which
the first £#— 1 elements a;,---, a;—; of this solution are alternatively even
and integral.

Working with (1) and proving some simple number-theoretical Lemmas
one shows now by induction on 4, that v,(c,) is as stated in our main
Theorem.

(1) This elegant way of deriving the {-ring isomorphism KU (HPk"l) =~ KO (CP”“z)
was communicated to us by J.F. Adams.
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