ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

FRANCOIS SIGRIST, ULRICH SUTER

On symplectic Stiefel manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.4, p. 493–497.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_4_493_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1972.

Geometria. — On symplectic Stiefel manifolds. Nota di François Sigrist e Ulrich Suter, presentata ^(*) dal Socio B. Segre.

RIASSUNTO. — In questa Nota preventiva vengono studiate certe rappresentazioni fra varietà simplettiche di Stiefel.

I. INTRODUCTION

Let Sp(n) be the symplectic group and $W_{n,k} = Sp(n)/Sp(n-k)$ the symplectic Stiefel manifold. For k > l, one has an obvious map $p: W_{n,k} \to W_{n,l}$, which is a fiber map with fiber $W_{n-l,k-l}$. The purpose of this paper is to give a complete description of the values of n, k and lfor which the map p has a cross-section. Details will appear elsewhere.

The corresponding problem for the orthogonal Stiefel manifolds is already completely solved (Adams, 1962; Eckmann–Whitehead, 1963), as is the unitary case (Adams–Walker, 1965; Suter, 1966), the most famous contribution being Adams' solution of the vector field problem on spheres [1]. For the symplectic Stiefel manifolds, the explicit results previously known can be stated as follows:

(i) The map $p: W_{n,2} \to W_{n,1} = S^{4n-1}$ has a cross-section if and only if *n* is a multiple of 24. This result is due to I. M. James [7].

(ii) For $k > l \ge 2$, the map $p: W_{n,k} \to W_{n,l}$ does not have a cross-section. For this result see [9, page 203].

We shall dispose of the remaining cases, i.e. the cases with l = 1, k > 2, by the following Theorem.

2. MAIN THEOREM

For any positive integer q and any prime p let $v_p(q)$ be the exponent of p in the prime power decomposition of q. We then have:

THEOREM. The symplectic Stiefel fibring $p: W_{n,k} \to W_{n,1}$ has a crosssection if and only if one of the following two equivalent conditions holds:

(I) For each integer j with $0 \le j \le k-1$ the coefficient a_i of z^j in

$$\left[\frac{2}{\sqrt{z}}\operatorname{ARSh}\frac{\sqrt{z}}{2}\right]^{2n} = \sum_{j=0}^{\infty} a_j z^j = \mathbf{I} - \frac{n}{\mathbf{I}^2} z + \cdots$$

is an integer if j is even and an even integer if j is odd.

(*) Nella seduta dell'8 aprile 1972.

493

(II) n is a multiple of the integer c_k , called quaternionic James number, which is defined by its decomposition into prime powers as follows:

$$\begin{split} \nu_{2}(c_{k}) &= \max_{s} (2 \ k - 1 \ , 2 \ s + \nu_{2}(s)) \ , \ 1 \leq s \leq k - 1 \\ \nu_{p}(c_{k}) &= \max_{t} (t + \nu_{p}(t)) \ , \qquad 1 \leq t \leq \left[\frac{2 \ k - 1}{p - 1}\right] \ , \ p \ odd < 2 \ k \\ \nu_{p}(c_{k}) &= 0 \ , \qquad p \ odd > 2 \ k. \end{split}$$

We observe in particular that c_k is divisible by all primes less than 2 k. The number c_2 is equal to 24, this is James' result mentioned above.

In the course of the proof of our Theorem we show that c_k is either equal to b_{2k} or to $1/2 \ b_{2k}$, where b_{2k} is the (known) complex James number. A closer study of the relation between c_k and b_{2k} shows: For k odd, c_k is always equal to $1/2 \ b_{2k}$. On the other hand if k is even, there are cases with $c_k = b_{2k}$ and such with $c_k = 1/2 \ b_{2k}$; the distribution turns out to be rather irregular, however for approximatively 73 % of all cases we have $c_{2m} = b_{4m}$.

3. OUTLINE OF THE PROOF

The Theorem is proved using techniques developed by Adams and Walker in the unitary case [3].

Let KO(X) resp. KU(X) be real resp. complex K-Theory of a finite CW-complex X, and let $J: KO(X) \rightarrow J(X)$ be Atiyah's J-homomorphism [4]. By HP^{k-1} we denote the (k - 1)-dimensional quaternionic right projective space. The following two Theorems are then the starting point for our study.

THEOREM [James, 6]. There exists a positive integer c_k , such that the Stiefel fibring $p: W_{n,k} \to W_{n,1}$ has a cross-section if and only if n is a multiple of c_k . (The integer c_k is the so called quaternionic James number).

THEOREM [Atiyah, 4]. Let $\alpha \in \mathrm{KU}(\mathrm{HP}^{k-1})$ be the canonical 2-dimensional complex Hopf-bundel and let $r\alpha \in \mathrm{KO}(\mathrm{HP}^{k-1})$ be its realification. The quaternionic James number c_k is the order of the element $J(r\alpha)$ in $J(\mathrm{HP}^{k-1})$. To determine the order of $J(r\alpha)$ we use the groups $J''(\mathrm{HP}^{k-1})$ resp. $J'(\mathrm{HP}^{k-1})$ as defined in [3], which constitute a computable upper resp. lower bound of the group $J(\mathrm{HP}^{k-1})$. We prove:

LEMMA I. For the space HP^m one has the isomorphisms

$$J''(HP^m) \stackrel{\theta''}{\cong} J(HP^m) \stackrel{\theta'}{\cong} J'(HP^m).$$

Proof. The first isomorphism follows from the now proved Adams conjecture [Quillen, 8]. Working with the cofibration $HP^{m-1} \rightarrow HP^m \rightarrow S^{4m}$ one gets $\theta' \circ \theta'' : J''(HP^m) \cong J'(HP^m)$ by induction on *m*, in the same way as in [3, Lemma 6.1].

The above Lemma enables us to work with $J''(HP^{k-1})$ or $J'(HP^{k-1})$ instead of $J(HP^{k-1})$, whatever is more appropriate in a given context. We first deal with $J'(HP^{k-1})$.

By definition [3] we have J'(X) = KO(X)/V(X), where V(X) is the subgroup of elements $\delta \in \mathrm{KO}(X)$, such that $\mathfrak{sh}(\delta) = \mathfrak{ch} \circ \mathfrak{c}(I + \gamma)$ for some element $\gamma \in \widetilde{KO}(X)$. (Here $sh : KO(X) \to I + \sum_{s>0}^{\infty} H^{4s}(X; Q)$ is the characteristic class corresponding to the power series of $\frac{e^{y/2} - e^{-y/2}}{y} =$ $=\frac{2\operatorname{Sh}(y/2)}{y}, \quad c:\operatorname{KO}(\mathbf{X})\to\operatorname{KU}(\mathbf{X}) \text{ is complexification and } ch:\operatorname{KU}(\mathbf{X})\to$ $\rightarrow \operatorname{H}^{*}(X; Q)$ is the chern character). The order c_{k} of the element $J'(r\alpha)$ in $J'(HP^{k-1})$ is therefore the smallest positive integer *n* for which

$$sh(-n \cdot r\alpha) = [sh(r\alpha)]^{-n} \in ch \circ c (\mathrm{KO}(\mathrm{HP}^{k-1})).$$

(We regard -n for convenience). The canonical map

$$g: \mathbb{CP}^{2^{k-1}} \to \mathbb{HP}^{k-1}$$

where CP^{2k-1} is complex projective space, induces an *injection* in ordinary cohomology, and we obtain, computing $KO(HP^{k-1}) \xrightarrow{c} KU(HP^{k-1}) \xrightarrow{g!}$ $KU(CP^{2k-1})$, the following two results:

(i) The image of the map

$$g^* \circ ch \circ c : \mathrm{KO}(\mathrm{HP}^{k-1}) \to \mathrm{H}^*(\mathrm{CP}^{2k-1}; \mathrm{Q}) = \mathrm{Q}[y] \pmod{y^{2k}}$$

is the free abelian group generated by 1, $2 [2 \operatorname{Sh}(y/2)]^2$, $[2 \operatorname{Sh}(y/2)]^4$,..., $\cdots, \varepsilon_j \left[2 \operatorname{Sh}(y/2) \right]^{2j}, \cdots, \varepsilon_{k-1} \left[2 \operatorname{Sh}(y/2) \right]^{2(k-1)} \pmod{y^{2k}}, \text{ where } \varepsilon_j = 1 \text{ if } j \text{ is}$ even and $\varepsilon_j = 2$ if j is odd.

(ii)
$$g^* \circ sh (-n \cdot r\alpha) = [sh \circ g! (r\alpha)]^{-n} = \left[\frac{2 \operatorname{Sh}(y/2)}{y}\right]^{-2n} \pmod{y^{2k}}.$$

In $Q[y] \pmod{y^{2^k}}$ one has a unique relation

$$(\mathbf{R}_n): \left[\frac{y}{2\operatorname{Sh}(y/2)}\right]^{2n} = \sum_{j=0}^{k-1} q_j \cdot \varepsilon_j \left[2\operatorname{Sh}(y/2)\right]^{2j} \pmod{y^{2k}},$$

where $q_0 = 1$, q_1, \dots, q_{k-1} are rational numbers depending on n, and consequently we deduce:

LEMMA 2. The order c_k of the element $J'(r\alpha)$ in $J'(HP^{k-1})$ is the smallest integer n, for which the coefficients $q_0 = 1, q_1, \dots, q_{k-1}$ in (\mathbf{R}_n) are integers. By an obvious transformation of power series we derive from Lemma 2

part I of our Theorem. To get part II we work with $J''(HP^{k-1})$ and prove:

LEMMA 3. The quaternionic James number c_k is either equal to the complex James number b_{2k} or to $1/2 b_{2k}$.

[309]

Proof. We first show, that the element $J'_{C}(\alpha) \in J''_{C}(HP^{k-1})$ has the same order as $J''(r\beta) \in J''(CP^{2k-2})$; here $r\beta$ is the realification of the canonical complex linebundle β over the complex projective space CP^{2k-2} . One has $KU(HP^{k-1}) = \mathbb{Z}[\sigma] \pmod{\sigma^k}$, where $\sigma = \alpha - 2$. On the other hand one knows, that $KO(CP^{2k-2}) = \mathbb{Z}[\omega] \pmod{\omega^k}$, where $\omega = r\beta - 2$ (see [3]). The homomorphism $g_1^{\pi}: KU(HP^{k-1}) \to KU(CP^{2k-2})$ induced by $CP^{2k-2} \subset CP^{2k-1} \xrightarrow{\mathscr{S}} HP^{k-1}$ is given by $g_1^{\pi}(\alpha) = \beta + \overline{\beta}$, and the complexification $c: KO(CP^{2k-2}) \to KU(CP^{2k-2})$ is determined by $c(r\beta) = \beta + \overline{\beta}$. Since both g_1^{π} and c are injective and compatible with the ψ-operations one obtains, slightly abusing notation, a ψ-ring isomorphism $c^{-1} \circ g_1^{\pi} = A : KU(HP^{k-1}) \cong$ $\cong KO(CP^{2k-2})$ (i). With the induced isomorphism $J''(A): J''_{C}(HP^{k-1}) \cong$ $\cong J''(CP^{2k-2})$ (see [2]) we deduce: The order of $J''_{C}(\alpha)$ is equal to the order of $J''(r\beta)$ which is b_{2k-1} [3]; by [5, p. 344] one has $b_{2k-1} = b_{2k}$. The homomorphism $J''(r): J''_{C}(HP^{k-1}) \to J''(HP^{k-1})$ (see [3, Appendix]) maps $J''_{C}(\alpha)$ onto $J''(r\alpha)$ and it follows, that the order of $J''(r\alpha)$, i.e. the integer c_k , divides b_{2k} . But b_{2k} is a factor of 2 c_k [6, 1.5] and Lemma 3 is proved.

From Lemma 3 we obtain $v_p(c_k) = v_p(b_{2k})$ for odd primes p; $v_p(b_{2k})$ is explicitly determined in [5, p. 343]. To complete the proof of part II of our Theorem it remains therefore to determine $v_2(c_k)$. Referring to part I we proceed as follows:

The function $f(z) = \left[\frac{2}{\sqrt{z}} \operatorname{ARSh} \frac{\sqrt{z}}{2}\right]^{2n}$ satisfies the functional equation $f(z) = \left(1 + \frac{z}{4}\right)^n \cdot f(4z + z^2).$

This implies the following relation for the coefficients $a_0 = 1$, a_1 , a_2 , \cdots , a_j , \cdots of the power series of f:

(I)
$$\binom{n}{j} + \sum_{i=1}^{j-1} \binom{n+i}{j-i} 4^{2i} \cdot a_i = 4^j (1-4^j) \cdot a_j, j = 1, 2, \cdots$$

In other words: The coefficients a_1, a_2, \cdots are the solution of the above system of linear equations, and c_k is the smallest positive integer n, for which the first k - 1 elements a_1, \cdots, a_{k-1} of this solution are alternatively even and integral.

Working with (1) and proving some simple number-theoretical Lemmas one shows now by induction on k, that $v_2(c_k)$ is as stated in our main Theorem.

(1) This elegant way of deriving the ψ -ring isomorphism KU (HP^{k-1}) \cong KO (CP^{2k-2}) was communicated to us by J.F. Adams.

References

- [1] ADAMS J.F., Vector fields on spheres, «Ann. of Math. », 75, 603–632 (1962).
- [2] ADAMS J.F., On the groups J(X). II, «Topology», 3, 137–171 (1965).
- [3] ADAMS J.F. and WALKER G., Complex Stiefel Manifolds, « Proc. Camb. Phil. Soc.», 61, 81-103 (1965).
- [4] ATIYAH M.F., Thom complexes, « Proc. London Math. Soc. », 11, 291-310 (1961).
- [5] ATIYAH M.F. and TODD J.A., On complex Stiefel Manifolds, « Proc. Camb. Phil. Soc. », 56, 342–353 (1960).
- [6] JAMES I.M., Cross-sections of Stiefel Manifolds, « Proc. London Math. Soc. », 8, 536-547 (1958).
- [7] JAMES I.M., Spaces associated with Stiefel Manifolds, « Proc. London Math. Soc. », 9, 115-140 (1959).
- [8] QUILLEN D., The Adams Conjecture, «Topology», 10, 67-80 (1971).
- [9] SUTER U., Die Nicht-Existenz von Schnittflächen komplexer Stiefel-Mannigfaltigkeiten, «Math. Z.», 113, 196-204 (1970).