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Fisica matematica. — A  mathematical model fo r  physical theories 
N ota II di E n z o  T o n t i ,  presentata (* (**)#) dal Socio B. F i n z i .

Riassunto. — In questa Nota si continua l’esame delle proprietà di un modello mate­
matico di una teoria fisica, presentato in una Nota precedente. Tali proprietà riguardano 
in particolare la formulazione variazionale, l’invertibilità del legame costitutivo, la decom­
posizione dell’equazione fondamentale in una parte spaziale ed una temporale, nonché la 
costruzione dello schema duale.

i . i .  Introduction

This is the second part of a paper which deals with a m athem atical model 
for physical theories [3]. In  this paper we prove a num ber of m athem atical 
properties th a t follow from  the assum ptions given in [3]. In  this paper 
we take aw ay the lim itation concerning the linearity  of definition and 
constitutive operators used in the properties shown in the preceding paper.

1.2. Invertible constitutive mappings

M any m athem atical properties of the model are based on the possibility 
to invert the constitutive m apping C. The necessary and sufficient condition 
is th a t C be one-to-one. This leads to investigate sufficient conditions in order 
th a t C be one-to-one. W hen C is linear a sufficient condition is th a t it be 
positive definite i. e. (flu  ì u)'>  0 for (& is the null element of the
U -space). This property  is frequently m et in physical theories.

W hen C is nonlinear we have the
Theorem 10 (invertiBiLiTy Theorem) : a sufficient condition in order 

that a mapping C be one-to-one {and then be invertible) is that C be strictly 
monotone, i.e.

(1.2.1) C (« " )  , u r—  u") > o  for u'=j*u" W.

Proof, if C is strictly m onotone and u ’^ u ” m ust be C (uf) =j= C (u"). 
This assures th a t two different elements u' and u ” cannot correspond to the 
same element v and then the m apping is one-to-one. Because the condition of 
being strictly monotone reduces to th a t of being positive definite in the linear

(*) This work has been sponsored by C.N.R. Istituto di Matematica del Politecnico 
di Milano.

(**) Nella seduta del 12 febbraio 1972.
(1) When >  is replaced by >  we have the definition of monotone operator.
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case, we shall consider in the sequel only strictly m onotone operators. W hat 
can be said about the inverse of a strictly monotone operator? W e have

Theorem i i : The inverse of a strictly monotone operator is also a strictly 
monotone operator.

Proof, w ith the position ^  =  C“1(V) relation (1.2.1) becomes 

(1.2.2) (vf —  v ' ^ C - f v ' ) —  C“1 (*/')> > 0  for v r= f v " .

1.3. Space and time part of the fundamental mapping <2>

W hen configuration variables depend on space and tim e coordinates 
it can happen th a t the definition operator D be the sum of two operators, 
generally nonlinear, formed with space and time derivatives respectively. 
In  this case we can decompose the operator D and the set of first kind 
variables according to the scheme

ut -  f D*l_ Us 1 D,

This am ounts to considering the U -space as the sum  of two subspaces 
U , and U s i.e. U  =  © U s . W hen this happens the balance equation can
be written in the form  (D is the adjoint of D)

(1-3-2) [D, I D J —> D^p and Th —> Dj<p 
in the non linear case

and the V -space can be conceived as the sum of two subspaces V  =  V/ © V f .
M oreover the constitutive operator C can often be decomposed accord­

ing to the scheme

(1.2.3.) ' Vt n re< o
VS _ O Cs\

where Ct and C, can be nonlinear operators.
U nder these hypotheses on the decomposition of D and C the fundam ental 

m apping becomes

(1.3.4) ' D<C,D,  <p+.Df C, Df <p =  c .

(2) In order to have an example to support the mind, the reader can think of the 
elastodynamic field whose fundamental equation is

pahk uk + — V* hkrs ~ ( y ru +  v s u ) = /*

(Navier equation) where the operator Cs is Hooke tensor Chkrs, Q  is p a ^ t 9 is the displa­
cement vector ukt a is the body force f  \ , the metric tensor, is the symmetrical 
part of gradient of the displacement vector uk3 Dt the time derivative.

26. — RENDICONTI 1972, Voi. LII, fase. 3.
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The subspaces U* , (and , V s) can be disjointed and conceived as 
two distinct spaces.

The corresponding scheme is shown in fig. 1

The decomposition into a tim e and space part of the operator C has 
several m athem atical advantages. For example in m any physical theories 
the operator C is not monotone, while is.

A nother property  is expressed by the following

THEOREM 12: i f  is a linear operator with dense domain in the <§>—space 
then i f  Cs is monotone the operator Fs — Dj Cs is also monotone.

Proof.

(1.3.5) <c, (til) -  C, («"), u") =  <C, (D, 9') -  C, (D, 9"), D, 9 -  D, 9") -

=  <D, C, (D, 9O — D, C, (D, 9") , ? f -  ? f/> >  o .

From  this p roperty  it follows th a t the fundam ental m apping F  w ritten in 
the form

(1.3.6) F,<p =  — F,<p+<7

has the typical structure of monotonie evolution equations to which m any 
Theorem s about existence, uniqueness and continuous dependence on initial 
data  can be applied [1] [4].

1.4. T h e  p o t e n t i a l s

One of the assum ptions of the m athem atical model (n. 10) is th a t the 
constitutive m apping C : U  |-> V  be symmetric (if linear) or have a sym m etric 
G ateaux derivative (if nonlinear). Such operators enjoy the property  th a t the 
circulation of the vector v =  C (u) along a line in the U —space connecting 
two fixed points does not depend on the line chosen [5]. In  other words 
the m apping v =  C (u) can be regarded as describing a conservative vector 
field in the U -space. This fact leads us to consider a potential th a t is a 
functional defined by

x=i
E \u\ =  E  [u0] +  j  (C(y)) , §Y)) and then SE [u\ =  (C (u) , 8u)

*A=0

(1.4.1)
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being 7] =  7] (X) so th a t 7] (o) =  , v] (i)  =  For this reason the operator C
is said to be a potential operator. I t is also called the gradient of the functional 
E [u]. W hen C is a linear operator we can choose 73 (X) — Xu and eq. (1.4.1) 
reduces to

1

(1.4-2) E[u] =  j  (Cku , uâl) =  - -  (u , Cu)
0

a well known result. T he link between C and E is reinforced by

THEOREM 13. I f  C is a monotone (resp. strictly monotone) operator, the 
potential E [u] is a convex (resp. strictly convex) functional and viceversa :

(1.4.3) E  [Xu'+ ( I  —  X) u"] <  XE [«'] +  (1 —  X) E [u"] (resp. < ) .

For the proof see [1; Theorem  1.2].

Theorem 14: (variational formulation in the nonlinear case).
The solution of the fundam ental equation (with c =  o) makes stationary the 

functional S [9] =  E [D (9)] being E  [u] given by eq. (1.4.1.).

Proof.

(1.4.4) S*S[9] -  ^ E [D 9] =  (CD (9) , SD(9)> =  (CD9 , D ;S9) -

-  (DJp CD (9) , §9) =  o .

S [9] will be called the action functional.

Theorem 13: I f  C is invertible mapping the inverse operator C“1 is also
of potential kind.

Proof. I t suffices to show th a t the elem entary circulation

( 1.4 .5)

is the variation of a functional (autom atically the circulation does not depend 
the line connecting two points).

From  the identity

(1.4.6) (8v ,u )  =  S ( v , u) •— (v , Su)

it follows

(1.4.7) ( 8v , C- 1 (v)) =  8 {v , C -1 (»)> —  SE [C-1 (»)] =

=  8«*», -  E [C-1 (w)]} =  SË [v] .
The new functional

_ Hef
(1-4-8) E [v] =  [v , C- 1 (0)] -  E [C -1 (v)]

will be called the dual potential. T he transform  (1.4.8) is known as Legendre 
transform .

Com bining Theorem  13 w ith this result we can state the

Theorem 16: I f  C is strictly monotone then the dual potential E [v~\ is convex.
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1.5. D u a l  b a l a n c e  e q u a t io n

If  we look at definition equation u — D (9) as an equation in which 
u  is assigned and 9 m ust be found we are faced with compatibility conditions 
on u  (that are existence conditions for 9). If  these conditions are found, 
be they  R (u) =  o we shall call the operator R  an annichilator of D because 
RD (9) e= o.

This m eans th a t null m anifold of R contains the range of D i.e. 
91 ( R ) D  31(D).

If all elements uo for which R u0 =  o can be cast into the form  u0 =  D 9 
then we call R  a m inim al annichilator because its null manifold coincides 
w ith the range of D : 9 t ( R )  =  31(D).

In this case the com patibility condition Ru — o is not only necessary 
but also sufficient to assure th a t the equation u =  D 9 adm its a solution.

W hile the dom ain of R  lies in the U -space, its range lies in another 
function space we choose linear and th a t we shall denote with T  and call 
dual source space.

If  definition equation is of the form u  =  u$ +  D (9) then the com pati­
b ility  condition is R  (u —  u0) =  o. If  D and R are linear, this equation can 
be w ritten Ru — t . T he “ incom patibility ” term  t  th a t can be viewed as 
a dual source variable. T he equation Ru  =  t  is then called dual balance 
equation. Alongside the linear T -space we are lead to introduce another linear 
function space whose elements are of the same tensorial order as those of T. 
This space will be denoted w ith Y  and called dual configuration space. These 
two spaces are put in duality  introducing the bilinear functional denoted with 

, t) . T he space Y  and the bilinear m ap , t )  will be chosen so that 
the duality  be separating and both spaces will be equipped w ith topologies 
th a t m ake the bilinear functional , t )  continuous.

1.6. R e l a t io n  b e t w e e n  t h e  dual  balance  a n d  t h e  du a l

DEFINITION OPERATOR (lin e a r  case)

W ith the bilinear form we can define the adjoint of the operator when 
the last is linear and when its dom ain is dense in the U -space

(1.6. r) (4*, =  (R41 > •

Now we can easily see th a t the equation v = R ^  gives a solution of the homo­
geneous balance equation Dv — o .

W e have in fact the following

T h e o re m  17: I f  R  is a linear operator with domain dense in the Id-space 
and range in  T, that be an annichilator of D, then D is an annichilator of R.

Proof.

(1.6.2) (tj, , R D 9> -  <R+ , D9) -  <DR<j, , 9> .
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Now if 9 e 3)'(D) RD 9 =  o because R is an annichilator of D : then 
(ty , R D 9) =  o for every ^ e T . In  particular this is true if ^ e 0  (R) then 
from (D R ^ , 9) =  o being 9 6 ®  (D) and 3) (D) =  U  follows D R ^ =  o. 
Thus D is annichilator of R.

An obvious question can be raised: is the solution v =  R ^ general, 
i.e. such th a t all elements v0 such th a t Dv0 =  o are of the form vQ =  RiJ; ? 
This implies th a t 81 (R) — 01 (D) . As we shall now see the answer is linked 
w ith the question: is the condition R u  =  o sufficient to assure th a t u  =  D9 ? 
W e have in fact the following

T h e o re m  18: Let U  and  T  be two complete topological vector spaces. I f  R 
is a closed linear operator with domain dense in  U  and closed range in  T  that 
is a m inim al annichilator of D, and i f  D is a closed linear operator with closed 
range then the operator D is a m inim al annichilator of R.

Proof. The hypothesis th a t R  be a minim al annichilator m eans
é)k (R) =  oft (D). Then ©fc1 (R) =  ^ ( D ) .  But, on account of the general 
property

(1.6.3) 9Ti (R) =  ä ( R )  and StA(D) =  9 t(D )  .

T hen l t(R )  =  0 Ï(D ). Because D is a closed operator its null space is also 
closed [6] i.e. 0 C (D) =  ê)b(D). Because R is closed with closed range then 
also R  has closed range [6] then cH (R) =  eft (R). It follows

(1.6.4) 8l(R) =  0 1 (D)

then D is a m inim al annichilator for R.
From  this Theorem  it follows th a t under the conditions given in the Theorem  

the equation v = . R ^ gives the general solution of the balance equation 
Dv =  0.

1.7. T h e  g e n e r a l i z e d  th e o r e m  o f  v i r t u a l  w o r k s

T he principle of virtual works of mechanics is a form ulation of equili­
brium  expressed as a link between source variables (the forces) and configu­
ration variables (the position vectors). The actual dependence of sources 
from configuration, i.e. constitutive equations, does not enter into the principle. 
W e now show th a t the principle can be restated as a Theorem  valid in the 
m athem atical model on account of the relation between definition and balance 
operators.

T h e o re m  19 ( g e n e r a l i z e d  th e o r e m  o f  v ir t u a l  w o rk s ) :  the balance 
equation is equivalent to the equation

( i -7-O { v  , 8u) =  ( g , 89)
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Proof.

(1.7.2) {v , Su) =  (v , SD (9)) =  ( v , DJp Sep) =  (D'cpV , S<p) == (g , S<p) .

COROLLARY 19-bis: i f  D is a linear operator, balance equation is equivalent 
to the equation

(1.7.3) (v , u) =  (a , <p>

Theorem 20 (dual generalized Theorem of virtual works). I f  
the annichilator R  is linear then the dual balance equation is equivalent to the 
equation

(1.7.4) ( § v  , u) —  , T> .

Proof.

(1.7.5) (Sip , t) =  (Sip , Ru) =  (RSip, u) =  (SRip , u) =  (Sv , ^) .

1.8. The dual scheme

In  order to relate dual source variables with dual configuration variables 
we need a m apping V  |-> U . W hen the constitutive m apping C can be inverted 
then its inverse C“1 realizes the m apping V  |-> U . W hen this happens we 
can consider the dual scheme ip -> v u t . The m apping RC“1 Rip =  t  

will be called the dual fundam ental m apping.
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