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Fisica matematica. — A  mathematical model fo r  physical theories 
N ota II di E n z o  T o n t i ,  presentata (* (**)#) dal Socio B. F i n z i .

Riassunto. — In questa Nota si continua l’esame delle proprietà di un modello mate
matico di una teoria fisica, presentato in una Nota precedente. Tali proprietà riguardano 
in particolare la formulazione variazionale, l’invertibilità del legame costitutivo, la decom
posizione dell’equazione fondamentale in una parte spaziale ed una temporale, nonché la 
costruzione dello schema duale.

i . i .  Introduction

This is the second part of a paper which deals with a m athem atical model 
for physical theories [3]. In  this paper we prove a num ber of m athem atical 
properties th a t follow from  the assum ptions given in [3]. In  this paper 
we take aw ay the lim itation concerning the linearity  of definition and 
constitutive operators used in the properties shown in the preceding paper.

1.2. Invertible constitutive mappings

M any m athem atical properties of the model are based on the possibility 
to invert the constitutive m apping C. The necessary and sufficient condition 
is th a t C be one-to-one. This leads to investigate sufficient conditions in order 
th a t C be one-to-one. W hen C is linear a sufficient condition is th a t it be 
positive definite i. e. (flu  ì u)'>  0 for (& is the null element of the
U -space). This property  is frequently m et in physical theories.

W hen C is nonlinear we have the
Theorem 10 (invertiBiLiTy Theorem) : a sufficient condition in order 

that a mapping C be one-to-one {and then be invertible) is that C be strictly 
monotone, i.e.

(1.2.1) C (« " )  , u r—  u") > o  for u'=j*u" W.

Proof, if C is strictly m onotone and u ’^ u ” m ust be C (uf) =j= C (u"). 
This assures th a t two different elements u' and u ” cannot correspond to the 
same element v and then the m apping is one-to-one. Because the condition of 
being strictly monotone reduces to th a t of being positive definite in the linear

(*) This work has been sponsored by C.N.R. Istituto di Matematica del Politecnico 
di Milano.

(**) Nella seduta del 12 febbraio 1972.
(1) When >  is replaced by >  we have the definition of monotone operator.
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case, we shall consider in the sequel only strictly m onotone operators. W hat 
can be said about the inverse of a strictly monotone operator? W e have

Theorem i i : The inverse of a strictly monotone operator is also a strictly 
monotone operator.

Proof, w ith the position ^  =  C“1(V) relation (1.2.1) becomes 

(1.2.2) (vf —  v ' ^ C - f v ' ) —  C“1 (*/')> > 0  for v r= f v " .

1.3. Space and time part of the fundamental mapping <2>

W hen configuration variables depend on space and tim e coordinates 
it can happen th a t the definition operator D be the sum of two operators, 
generally nonlinear, formed with space and time derivatives respectively. 
In  this case we can decompose the operator D and the set of first kind 
variables according to the scheme

ut -  f D*l_ Us 1 D,

This am ounts to considering the U -space as the sum  of two subspaces 
U , and U s i.e. U  =  © U s . W hen this happens the balance equation can
be written in the form  (D is the adjoint of D)

(1-3-2) [D, I D J —> D^p and Th —> Dj<p 
in the non linear case

and the V -space can be conceived as the sum of two subspaces V  =  V/ © V f .
M oreover the constitutive operator C can often be decomposed accord

ing to the scheme

(1.2.3.) ' Vt n re< o
VS _ O Cs\

where Ct and C, can be nonlinear operators.
U nder these hypotheses on the decomposition of D and C the fundam ental 

m apping becomes

(1.3.4) ' D<C,D,  <p+.Df C, Df <p =  c .

(2) In order to have an example to support the mind, the reader can think of the 
elastodynamic field whose fundamental equation is

pahk uk + — V* hkrs ~ ( y ru +  v s u ) = /*

(Navier equation) where the operator Cs is Hooke tensor Chkrs, Q  is p a ^ t 9 is the displa
cement vector ukt a is the body force f  \ , the metric tensor, is the symmetrical 
part of gradient of the displacement vector uk3 Dt the time derivative.

26. — RENDICONTI 1972, Voi. LII, fase. 3.
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The subspaces U* , (and , V s) can be disjointed and conceived as 
two distinct spaces.

The corresponding scheme is shown in fig. 1

The decomposition into a tim e and space part of the operator C has 
several m athem atical advantages. For example in m any physical theories 
the operator C is not monotone, while is.

A nother property  is expressed by the following

THEOREM 12: i f  is a linear operator with dense domain in the <§>—space 
then i f  Cs is monotone the operator Fs — Dj Cs is also monotone.

Proof.

(1.3.5) <c, (til) -  C, («"), u") =  <C, (D, 9') -  C, (D, 9"), D, 9 -  D, 9") -

=  <D, C, (D, 9O — D, C, (D, 9") , ? f -  ? f/> >  o .

From  this p roperty  it follows th a t the fundam ental m apping F  w ritten in 
the form

(1.3.6) F,<p =  — F,<p+<7

has the typical structure of monotonie evolution equations to which m any 
Theorem s about existence, uniqueness and continuous dependence on initial 
data  can be applied [1] [4].

1.4. T h e  p o t e n t i a l s

One of the assum ptions of the m athem atical model (n. 10) is th a t the 
constitutive m apping C : U  |-> V  be symmetric (if linear) or have a sym m etric 
G ateaux derivative (if nonlinear). Such operators enjoy the property  th a t the 
circulation of the vector v =  C (u) along a line in the U —space connecting 
two fixed points does not depend on the line chosen [5]. In  other words 
the m apping v =  C (u) can be regarded as describing a conservative vector 
field in the U -space. This fact leads us to consider a potential th a t is a 
functional defined by

x=i
E \u\ =  E  [u0] +  j  (C(y)) , §Y)) and then SE [u\ =  (C (u) , 8u)

*A=0

(1.4.1)
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being 7] =  7] (X) so th a t 7] (o) =  , v] (i)  =  For this reason the operator C
is said to be a potential operator. I t is also called the gradient of the functional 
E [u]. W hen C is a linear operator we can choose 73 (X) — Xu and eq. (1.4.1) 
reduces to

1

(1.4-2) E[u] =  j  (Cku , uâl) =  - -  (u , Cu)
0

a well known result. T he link between C and E is reinforced by

THEOREM 13. I f  C is a monotone (resp. strictly monotone) operator, the 
potential E [u] is a convex (resp. strictly convex) functional and viceversa :

(1.4.3) E  [Xu'+ ( I  —  X) u"] <  XE [«'] +  (1 —  X) E [u"] (resp. < ) .

For the proof see [1; Theorem  1.2].

Theorem 14: (variational formulation in the nonlinear case).
The solution of the fundam ental equation (with c =  o) makes stationary the 

functional S [9] =  E [D (9)] being E  [u] given by eq. (1.4.1.).

Proof.

(1.4.4) S*S[9] -  ^ E [D 9] =  (CD (9) , SD(9)> =  (CD9 , D ;S9) -

-  (DJp CD (9) , §9) =  o .

S [9] will be called the action functional.

Theorem 13: I f  C is invertible mapping the inverse operator C“1 is also
of potential kind.

Proof. I t suffices to show th a t the elem entary circulation

( 1.4 .5)

is the variation of a functional (autom atically the circulation does not depend 
the line connecting two points).

From  the identity

(1.4.6) (8v ,u )  =  S ( v , u) •— (v , Su)

it follows

(1.4.7) ( 8v , C- 1 (v)) =  8 {v , C -1 (»)> —  SE [C-1 (»)] =

=  8«*», -  E [C-1 (w)]} =  SË [v] .
The new functional

_ Hef
(1-4-8) E [v] =  [v , C- 1 (0)] -  E [C -1 (v)]

will be called the dual potential. T he transform  (1.4.8) is known as Legendre 
transform .

Com bining Theorem  13 w ith this result we can state the

Theorem 16: I f  C is strictly monotone then the dual potential E [v~\ is convex.
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1.5. D u a l  b a l a n c e  e q u a t io n

If  we look at definition equation u — D (9) as an equation in which 
u  is assigned and 9 m ust be found we are faced with compatibility conditions 
on u  (that are existence conditions for 9). If  these conditions are found, 
be they  R (u) =  o we shall call the operator R  an annichilator of D because 
RD (9) e= o.

This m eans th a t null m anifold of R contains the range of D i.e. 
91 ( R ) D  31(D).

If all elements uo for which R u0 =  o can be cast into the form  u0 =  D 9 
then we call R  a m inim al annichilator because its null manifold coincides 
w ith the range of D : 9 t ( R )  =  31(D).

In this case the com patibility condition Ru — o is not only necessary 
but also sufficient to assure th a t the equation u =  D 9 adm its a solution.

W hile the dom ain of R  lies in the U -space, its range lies in another 
function space we choose linear and th a t we shall denote with T  and call 
dual source space.

If  definition equation is of the form u  =  u$ +  D (9) then the com pati
b ility  condition is R  (u —  u0) =  o. If  D and R are linear, this equation can 
be w ritten Ru — t . T he “ incom patibility ” term  t  th a t can be viewed as 
a dual source variable. T he equation Ru  =  t  is then called dual balance 
equation. Alongside the linear T -space we are lead to introduce another linear 
function space whose elements are of the same tensorial order as those of T. 
This space will be denoted w ith Y  and called dual configuration space. These 
two spaces are put in duality  introducing the bilinear functional denoted with 

, t) . T he space Y  and the bilinear m ap , t )  will be chosen so that 
the duality  be separating and both spaces will be equipped w ith topologies 
th a t m ake the bilinear functional , t )  continuous.

1.6. R e l a t io n  b e t w e e n  t h e  dual  balance  a n d  t h e  du a l

DEFINITION OPERATOR (lin e a r  case)

W ith the bilinear form we can define the adjoint of the operator when 
the last is linear and when its dom ain is dense in the U -space

(1.6. r) (4*, =  (R41 > •

Now we can easily see th a t the equation v = R ^  gives a solution of the homo
geneous balance equation Dv — o .

W e have in fact the following

T h e o re m  17: I f  R  is a linear operator with domain dense in the Id-space 
and range in  T, that be an annichilator of D, then D is an annichilator of R.

Proof.

(1.6.2) (tj, , R D 9> -  <R+ , D9) -  <DR<j, , 9> .
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Now if 9 e 3)'(D) RD 9 =  o because R is an annichilator of D : then 
(ty , R D 9) =  o for every ^ e T . In  particular this is true if ^ e 0  (R) then 
from (D R ^ , 9) =  o being 9 6 ®  (D) and 3) (D) =  U  follows D R ^ =  o. 
Thus D is annichilator of R.

An obvious question can be raised: is the solution v =  R ^ general, 
i.e. such th a t all elements v0 such th a t Dv0 =  o are of the form vQ =  RiJ; ? 
This implies th a t 81 (R) — 01 (D) . As we shall now see the answer is linked 
w ith the question: is the condition R u  =  o sufficient to assure th a t u  =  D9 ? 
W e have in fact the following

T h e o re m  18: Let U  and  T  be two complete topological vector spaces. I f  R 
is a closed linear operator with domain dense in  U  and closed range in  T  that 
is a m inim al annichilator of D, and i f  D is a closed linear operator with closed 
range then the operator D is a m inim al annichilator of R.

Proof. The hypothesis th a t R  be a minim al annichilator m eans
é)k (R) =  oft (D). Then ©fc1 (R) =  ^ ( D ) .  But, on account of the general 
property

(1.6.3) 9Ti (R) =  ä ( R )  and StA(D) =  9 t(D )  .

T hen l t(R )  =  0 Ï(D ). Because D is a closed operator its null space is also 
closed [6] i.e. 0 C (D) =  ê)b(D). Because R is closed with closed range then 
also R  has closed range [6] then cH (R) =  eft (R). It follows

(1.6.4) 8l(R) =  0 1 (D)

then D is a m inim al annichilator for R.
From  this Theorem  it follows th a t under the conditions given in the Theorem  

the equation v = . R ^ gives the general solution of the balance equation 
Dv =  0.

1.7. T h e  g e n e r a l i z e d  th e o r e m  o f  v i r t u a l  w o r k s

T he principle of virtual works of mechanics is a form ulation of equili
brium  expressed as a link between source variables (the forces) and configu
ration variables (the position vectors). The actual dependence of sources 
from configuration, i.e. constitutive equations, does not enter into the principle. 
W e now show th a t the principle can be restated as a Theorem  valid in the 
m athem atical model on account of the relation between definition and balance 
operators.

T h e o re m  19 ( g e n e r a l i z e d  th e o r e m  o f  v ir t u a l  w o rk s ) :  the balance 
equation is equivalent to the equation

( i -7-O { v  , 8u) =  ( g , 89)
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Proof.

(1.7.2) {v , Su) =  (v , SD (9)) =  ( v , DJp Sep) =  (D'cpV , S<p) == (g , S<p) .

COROLLARY 19-bis: i f  D is a linear operator, balance equation is equivalent 
to the equation

(1.7.3) (v , u) =  (a , <p>

Theorem 20 (dual generalized Theorem of virtual works). I f  
the annichilator R  is linear then the dual balance equation is equivalent to the 
equation

(1.7.4) ( § v  , u) —  , T> .

Proof.

(1.7.5) (Sip , t) =  (Sip , Ru) =  (RSip, u) =  (SRip , u) =  (Sv , ^) .

1.8. The dual scheme

In  order to relate dual source variables with dual configuration variables 
we need a m apping V  |-> U . W hen the constitutive m apping C can be inverted 
then its inverse C“1 realizes the m apping V  |-> U . W hen this happens we 
can consider the dual scheme ip -> v u t . The m apping RC“1 Rip =  t  

will be called the dual fundam ental m apping.
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