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Fisica matematica. — 4 mathematical model for physical theories ©.
Nota Il di Enzo TonTi, presentata ™ dal Socio B. Finzr.

RIASSUNTO. — In questa Nota si continua ’esame delle proprietd di un modello mate-
matico di una teoria fisica, presentato in una Nota precedente. Tali proprietd riguardano
in particolare la formulazione variazionale, l'invertibilitd del legame costitutivo, la decom-
posizione dell’equazione fondamentale in una parte spaziale ed una temporale, nonché la
costruzione dello schema duale.

I.1. INTRODUCTION

This is the second part of a paper which deals with a mathematical model
for physical theories [3]. In this paper we prove a number of mathematical
properties that follow from the assumptions given in [3]. In this paper
we take away the limitation concerning the linearity of definition and
constitutive operators used in the properties shown in the preceding paper.

1.2. INVERTIBLE CONSTITUTIVE MAPPINGS

Many mathematical properties of the model are based on the possibility
to invert the constitutive mapping C. The necessary and sufficient condition
is that C be one-to-one. This leads to investigate sufficient conditions in order
that C be one-to-one. When C is linear a sufficient condition is that it be
positive definite i.e. (Cu,#)>o0 for #==9 (9 is the null element of the
U-space). This property is frequently met in physical theories.

When C is nonlinear we have the

THEOREM 10 (INVERTIBILITY THEOREM): a sufficient condition in order
that a mapping C be one-to-one (and them be invertible) is that C be strictly
monotone, i.e.

(1.2.1) C@)—C@"),u—u"y >0 for u'==u" ®.

Proof: if C is strictly monotone and #'==#"" must be C (%") ==C («'").
This assures that two different elements #' and #'’' cannot correspond to the
same element v and then the mapping is one-to-one. Because the condition of
being strictly monotone reduces to that of being positive definite in the linear

(*¥) This work has been sponsored by C.N.R. Istituto di Matematica del Politecnico
di Milano.

(**) Nella seduta del 12 febbraio 1972.

(1) When > is replaced by > we have the definition of monofone operator.
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case, we shall consider in the sequel only strictly monotone operators. What
can be said about the inverse of a strictly monotone operator? We have

THEOREM 11: The inverse of a strictly monotone operator is also a strictly
monotone operator.

Proof: with the position # = C*(v) relation (1.2.1) becomes

(1.2.2) @ —o",Cr@)—C1@")) >0 for o'==v".

1.3. SPACE AND TIME PART OF THE FUNDAMENTAL MAPPING (@)

When configuration variables depend on space and time coordinates
it can happen that the definition operator D be the sum of two operators,
generally nonlinear, formed with space and time derivatives respectively.
In this case we can decompose the operator D and the set of first kind
variables according to the scheme

(1.3.1) [”’] = Hgf]cp.

Us

This amounts to considering the U-space as the sum of two subspaces
U, and U, i.e. U=U,®U,. When this happens the balance equation can
be written in the form (D is the adjoint of D)

Y
Us

(1.3.2) D, | D, =0 D, - D}, and D, ->Dj,

in the non linear case

and the V—space can be conceived as the sum of two subspaces V=V, ® V,.
Moreover the constitutive operator C can often be decomposed accord-
ing to the scheme
=
Us

Yt
(1.2.3.) [»ﬂ—:
where C, and C, can be nonlinear operators.
Under these hypotheses on the decomposition of D and C the fundamental
mapping becomes

(134'> ﬁiCtDtCP+ﬁsC:D:(P=G'

Cs

(o]

Cs

(2) In order to have an example to support the mind, the reader can think of the

elastodynamic field whose fundamental equation is

9 9 1 :

o R k - b . v s s _r —

I P

(Navier equation) where the operator C; is Hooke tensor Cpzrs, Ctis p azz, @ is the displa-
cement vector ##, ¢ is the body force f;, @;; the metric tensor, Dy is the symmetrical
part of gradient of the displacement vector #?, D; the time derivative.

P 2

26. — RENDICONTI 1972, Vol. LII, fasc. 3.
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The subspaces U,, U, (and V,,V,) can be disjointed and conceived as
two distinct spaces.

The corresponding scheme is shown in fig. 1

¢ T

Q@
Q

s
D¢ ”[‘): \
D tut Vi D,
Vez Cruy —— '
t= “tHt
Ug Vs
Vs= Csus 7\\‘6
Fig. 1.

The decomposition into a time and space part of the operator C has
several mathematical advantages. For example in many physical theories
the operator C is not monotone, while C, is.

Another property is expressed by the following

THEOREM 12: if D, s a linear operator with dense domain in the O—space
then if C, is monotone the operator ¥, = D,C,D, is also monotone.

Proof:
<I ’3‘5) <C: <%’> - C: (%”) ) %I—_ %”> == <Cx (Ds CPI> - Cs (D.r CP”) ) D.r (P,—— D.\‘ CP”> =
= (D.C, (D,9)—D,C, (D,¢"), 9'— 9"y =o0.

From this property it follows that the fundamental mapping F written in
the form

(1.3.6) F,e=—F.¢o+o

has the typical structure of monotonic evolution equations to which many
Theorems about existence, uniqueness and continuous dependence on initial
data can be applied [1] [4].

1.4. THE POTENTIALS

One of the assumptions of the mathematical model (n. 10) is that the
constitutive mapping C:U |-V be symmetric (if linear) or have a symmetric
Gateaux derivative (if nonlinear). Such operators enjoy the property that the
circulation of the vector = C (%) along a line in the U-space connecting
two fixed points does not depend on the line chosen [5]. In other words
the mapping v = C (%) can be regarded as describing a conservative vector
field in the U-space. This fact leads us to consider a potential that is a

functional defined by
A=1

(1.4.1) E ] = E [1g] + f (), 3 and then SE[u] = (C (), 5u)

A=0
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being n =w(%) so that 7(0) = o, 1(1) = %. For this reason the operator C
is said to be a potential operator. 1t is also called the gradient of the functional
E[x]. When C is a linear operator we can choose 1(2) = Az and eq. (1.4.1)

reduces to
1

(1.4.2) E[u] = j (Coae, uddy = L G, Cuiy

a well known result. The link between C and E is reinforced by

THEOREM 13. If Cis a monotone (resp. strictly monotone) operator, the
potential Elu] is a convex (resp. strictly comvex) functional and viceversa:

(1.4.3) ERe/+ (1 —Nu"] <AE[#'] + (1 —2) E[«] (resp. <).
For the proof see [1; Theorem 1.2].

THEOREM 14: (VARIATIONAL FORMULATION IN THE NONLINEAR CASE).
The solution of the fundamental equation (with o = 0) makes stationary the
Junctional S [¢] = E [D (9)] being E [u] given by eg. (1.4.1.).

Proof.
(t44)  3,5[¢] = 3, E[De] = (CD(9), 3D (4)) = (CDy , D}, 5g) =

= D,CD(p), 8¢) =o.

S[e] will be called the action functional.

THEOREM 15: If C is invertible mapping the inverse operator C is also
of potential kind.

Proof. It suffices to show that the elementary circulation
(14:5) (v, C (@)

is the variation of a functional (automatically the circulation does not depend
the line connecting two points).
From the identity

(1.4.6) v, uy =38, uy — (v, du)
it follows
(47 (30,CR@) = 3@, C @) —SE[CT()] =

=3{(@,C' @) —E[CT ()]} = 3E[¢] .
The new functional
(1.4.8) Efv] = [v,C(@)] — E[C (0)]

will be called the dual potential. The transform (1.4.8) is known as Legendre
transform.

Combining Theorem 13 with this result we can state the

THEOREM 16: If C is strictly monotone then the dual potential E[v] is convex.
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1.5. DUAL BALANCE EQUATION

If we look at definition equation # = D (@) as an equation in which
u is assigned and ¢ must be found we are faced with compatibility conditions
on z (that are existence conditions for ¢). If these conditions are found,
be they R (%) = o we shall call the operator R an annickilator of D because
RD (¢) = o.

This means that null manifold of R contains the range of D i.e.
O (R) DR (D).

If all elements g for which Rz, = o can be cast into the form 7, = D¢
then we call R a miénimal annichilator because its null manifold coincides
with the range of D : 9T(R) = & (D).

In this case the compatibility condition Rz = 0 is not only necessary
but also sufficient to assure that the equation z = D¢ admits a solution.

While the domain of R lies in the U-space, its range lies in another
function space we choose /inear and that we shall denote with T and call
dual source space.

If definition equation is of the form z = #%; + D (¢) then the compati-
bility condition is R (% —#,) = 0. If D and R are linear, this equation can
be written Rz = 7. The “ incompatibility ”” term t that can be viewed as
a dual source variable. The equation Rz = 1 is then called dual balance
equation. Alongside the linear T-space we are lead to introduce another linear
function space whose elements are of the same tensorial order as those of T.
This space will be denoted with W and called dual configuration space. These
two spaces are put in duality introducing the bilinear functional denoted with
(b, 7). The space V' and the bilinear map ({,7) will be chosen so that
the duality be separating and both spaces will be equipped with topologies
that make the bilinear functional ({, t) continuous.

1.6. RELATION BETWEEN THE DUAL BALANCE AND THE DUAL
DEFINITION OPERATOR (linear case)

With the bilinear form we can define the adjoint of the operator when
the last is Zimear and when its domain is dense in the U-space

(1.6.1) W, Ruy = (RY, ).

Now we can easily see that #he equation v=R{ gives a solution of the homo-
geneous balance equation Dv = o.
We have in fact the following

THEOREM 17: If R is a linear operator with domain dense in the U—space
and range in'T, that be an annichilator of D, then D is an annichilator of R.

Proof.
(1.6.2) (b, RDg) = (R¢, Doy = (DR, o) .
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Now if ¢ € D(D) RD¢ = 0 because R is an annichilator of D: then
W, RDcp) =0 for every ¢ € V. In particular this is true if ¢ € Q(R) then

from <DRKIJ @) =0 bemg ¢eDM) and DMD)=U follows DRY = o.
Thus D is annichilator of R.

An obvious question can be raised: is the solution »= INQLL general,
ie. such that all elements z, such that Dy;, = o are of the form ¢, = Ry?
This implies that & (R) = o7 (D) As we shall now see the answer is linked
with the question: is the condition Rz =0 suficient to assure that z=Deg?
We have in fact the following

THEOREM 18: Let U and T be two complete topological vector spaces. If R
s @ closed linear operator with domain dense in U and closed range in T that
s @ minimal annichilator of D, and if D is a closed linear operator with closed
range then the operator D is a minimal annichilator of R.

Proof.  The hypothesis that R be a minimal annichilator means
O (R) =R (D). Then 9'(R) = ®*(D). But, on account of the general
property

(1.6.3) M R)=HK(R) and &K'YD)=ND).

Then Q{(IN{) e @Z(ﬁ) Because D is a closed operator its null space is also
closed [6] i.e. 9T (D) = 9 (D). Because R is closed with closed range then
also R has closed range [6] then ® (R) = & (R). It follows

(1.6.4) & (R) = ov (D)

then D is a minimal annichilator for R.
From this Theorem it follows that under the conditions given in the Theorem

the equation v = R{ gives the gemeral solution of the balance equation
Dy = o.

1.7. THE GENERALIZED THEOREM OF VIRTUAL WORKS

The principle of virtual works of mechanics is a formulation of equili-
brium expressed as a link between source variables (the forces) and configu-
ration variables (the position vectors). The actual dependence of sources
from conﬁguratlon, i.e. constitutive equations, does not enter into the principle.
We now show that the principle can be restated as a Theorem valid in the
mathematical model on account of the relation between definition and balance
operators.

THEOREM 19 (GENERALIZED THEOREM OF VIRTUAL WORKS): #he balance
equation is equivalent to the equation

(1.7.1) (v, duy = (o, 3¢)
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Proof.
(1.7.2) (v, 84y = (v, 3D (¢)) = (v, D, d¢) = (Do, 3¢) = (o, d¢).

COROLLARY 19-bis: #f D is a linear operator, balance equation is equivalent
to the equation

(1.7.3) (v,u) = (s, 9

THEOREM 20 (DUAL GENERALIZED THEOREM OF VIRTUAL WORKS). If
the annichilator R is linear then the dual balance equation is equivalent to the
equation

(1.7.4) @v,uy= (3, 7).
Proof.
(175 @b, 1) =3¢, Ruy = (R8, u) = (BRY, w) = (30, 1) .

1.8. THE DUAL SCHEME

In order to relate dual source variables with dual configuration variables
we need a mapping V |- U. When the constitutive mapping C can be inverted
then its inverse C1 realizes the mapping V |- U. When this happens we
can consider the dual scheme ¢ - v —# — 1. The mapping RCTRy =«
will be called the dual fundamental mapping.
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