ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

WALTER HENGARTNER, RADU THEODORESCU

Concentration functions. II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.3, p. 346–349.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_3_346_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Calcolo delle probabilità.** — *Concentration functions*. II ^(*). Nota di Walter Hengartner e Radu Theodorescu, presentata ^(**) dal Socio B. Segre.

RIASSUNTO. — Alcuni problemi di convergenza possono venire trattati con l'uso di numeri reali associati alle misure di probabilità; questi sono chiamati concentrazioni. In tal guisa gli AA. pervengono alle proprietà delle funzioni di concentrazione ottenute da P. Lévy [5], ed a generalizzare certi risultati più recenti di K. Ito [4].

Certain convergence problems may be handled by using real numbers associated with probability measures; these numbers are called concentrations. They basically yield, for these problems, the same properties as the concentration functions of P. Lévy [5]. In what follows we shall extend certain results due to K. Ito [4].

1. Consider the real line R and the σ -algebra \mathscr{B} of its Borel sets. Suppose that λ is a probability measure on \mathscr{B} , absolutely continuous on R with respect to the Lebesgue measure m, and such that the Radon-Nykodim derivative $d\lambda/dm > 0$ on $(0, \alpha)$, $\alpha > 0$. Let h be a continuous mapping from [0, 1] to [0, 1] ⁽¹⁾ satisfying the following conditions:

 (h_1) for any sequence of characteristic functions $(\Psi_n)_{n \in \mathbb{N}^*}$, $\mathbb{N}^* = \{I, 2, \cdots\}$, we have $\int_{\mathbb{R}} h(|\Psi_n(t)|) d\lambda(t) \to I$ or zero iff $\int_{\mathbb{R}} |\Psi_n(t)| d\lambda(t) \to I$ or zero respectively; $\int_{\mathbb{R}} h(|\Psi_n(t)|) d\lambda(t) \to I$

 (h_2) h(0) = 0 , h(1) = 1 ⁽²⁾.

Examples of such functions are $h(x) = x^p$, p > 0, and any h such that $x^p \le h(x) \le x^q$, p, q > 0.

DEFINITION. – The real number

$$q_{\mu} = \int_{\mathbf{R}} h\left(\left| \psi_{\mu}(t) \right| \right) \, \mathrm{d}\lambda(t) \,,$$

where ψ_{μ} is the characteristic function of the probability measure μ , is called the concentration of μ with respect to λ and h.

(*) This research was supported by the National Research Council of Canada grants A-7339 and A-7223. For Part I, see [2].

- (**) Nella seduta dell'11 marzo 1972.
- (1) Any bounded interval $[\alpha, \beta]$ may be, of course, considered.

(2) This assumption does not lead to any loss of generality.

2. The following Theorem summarizes the main properties of q_{μ} . THEOREM. - We have

I) $0 < q_u \le I$;

2) $q_{\mu} = I$ iff $\mu = \delta_{x_0}$, where δ_{x_0} is the degenerate probability measure concentrated at x_0 ;

3)
$$q_{\mu} = q_{\mu a} = q_{\mu^s}$$
, where μ_a and μ^s are defined by

$$\mu_a(\mathbf{A}) = \mu(\mathbf{A} - a) \quad , \quad \mu^s(\mathbf{A}) = \mu(-\mathbf{A})$$

for every $A \in \mathfrak{B}$, and

$$A \pm B = \{a \pm b : a \in A, b \in B\};$$

4) $q_{\mu*\nu} \leq \min(q_{\mu}, q_{\nu})$, provided that h is increasing (here ** * denotes convolution);

5) q_{μn}→0 as n→∞ iff Q_{μn}(l)→0 as n→∞ for every l>0 (here Q_μ(l) = sup μ ([0, l] + x) is the concentration function of μ);
6) q_{μn}→ I as n→∞ iff μ_n is weakly essentially convergent to δ₀ as n→∞;

 $n \to \infty$;

7) $q_n \to q > 0$ as $n \to \infty$ iff $\stackrel{n}{\underset{k=1}{\overset{n}{\to}}} \mu_k$ is weakly essentially convergent.

Proof. - I) There is always a neighbourhood of zero in which $|\psi_{\mu}(t)| > I - \varepsilon$, $\varepsilon > 0$, and a neighbourhood of zero in which $h(|\psi_{\mu}(t)|) > I/2$; hence $\int_{\mathbf{P}} h(|\psi_{\mu}(t)|) d\lambda(t) > 0$, so that $q_{\mu} > 0$. Next, it is easily seen that $q_{\mu} \leq 1$

2) This property is mainly based on the fact that $|\psi_{\mu}(t)| \equiv 1 m$ -a.s. in a neighbourhood of zero iff $\mu = \delta_{x_0}$.

3) and 4) are straightforward consequences of the elementary properties of characteristic functions.

5) Suppose that $q_{\mu_n} \to 0$ as $n \to \infty$. According to C. G. Esseen [1],

$$\mathcal{Q}_{\mu_n}(\mathbf{L}) \leq \mathbf{CL} \int_{-2\pi/\mathbf{L}}^{2\pi/\mathbf{L}} \left| \psi_{\mu_n}(t) \right| \, \mathrm{d}t \,,$$

where C is an absolute constant. Now let L large enough so that $2\pi/L < \alpha$; then we have

(1)
$$Q_{\mu_n}(L) \le CL \int_{-\alpha}^{\infty} |\psi_{\mu_n}(t)| dt$$

But we know that $\int_{\mathbb{R}} h(|\psi_{\mu_n}(t)|) d\lambda(t) \to 0$ as $n \to \infty$, and by (h_1) this is true iff $\int_{\mathbb{R}} |\psi_{\mu_n}(t)| d\lambda(t) \to 0$ as $n \to \infty$; moreover, $\int_{0}^{\alpha} |\psi_{\mu_n}(t)| dt \to 0$ as $n \to \infty$

and, since $|\psi_{\mu_n}(-t)| = |\psi_{\mu_n}(t)|$ for every $t \in \mathbb{R}$, we conclude that $\int |\psi_{\mu_n}(t)| dt \to 0 \text{ as } n \to \infty. \text{ Hence, by (I), we obtain } Q_{\mu_n}(l) \to 0 \text{ as } n \to \infty$ for every l > 0.

Conversely, suppose that $Q_{\mu_n}(l) \to 0$ as $n \to \infty$ for every l > 0. Since λ is absolutely continuous with respect to *m* we have $\psi_{\lambda}(t) \to 0$ as $|t| \to \infty$ (cf. E. Lukacs [7], p. 19). For any $\varepsilon > 0$ there is a number $t_0 > 0$ such that $|\psi_{\lambda}(t)| < \varepsilon \text{ if } |t| \ge t_0. \text{ Now } q_{\mu_n} \to 0 \text{ as } n \to \infty \text{ iff } \int_{\mathbb{R}} |\psi_{\mu_n}(t)|^2 d\lambda(t) \to 0$

$$\int_{\mathbf{R}} |\psi_{\mu_n}(t)|^2 d\lambda(t) = \iint_{\mathbf{R}\times\mathbf{R}} \psi_{\lambda}(x-y) d\mu_n(x) d\mu_n(y) \le$$
$$\le \iint_{|x-y| \le t_0} d\mu_n(x) d\mu_n(y) + \iint_{|x-y| > t_0} |\psi_{\lambda}(x-y)| d\mu_n(x) d\mu_n(y) \le$$
$$\le Q_{\mu_n}(t_0) + \varepsilon.$$

Therefore $\limsup q_{\mu_n} \leq \varepsilon$ for every $\varepsilon > 0$; hence $q_{\mu_n} \to 0$ as $n \to \infty$. 6) Suppose that $q_{\mu_n} \to I$ as $n \to \infty$. Then $\int_{n} |\psi_{\mu_n}(t)| d\lambda(t) \to I$ as $n \to \infty$; now, since λ is absolutely continuous on R with respect to *m* and $d\lambda/dm > 0$ in (0, α), we have $\int_{0}^{\infty} (I - |\psi_{\mu_n}(t)|) dt \to 0$ as $n \to \infty$; hence

$$\int_{0}^{\alpha} \mathbf{I} - |\psi_{\mu_{n}}(t)|^{2} dt \leq 2 \int_{0}^{\alpha} (\mathbf{I} - |\psi_{\mu_{n}}(t)|) dt \to \mathbf{O}$$

as $n \to \infty$. A result due to Ju. V. Linnik [6], p. 55-57, implies that Q_{μ_n} converges weakly as $n \to \infty$ to the degenerate distribution function H₀ with mass point at zero. It follows that there exist constants a_n , $n \in \mathbb{N}^*$, such that μ_{n,a_n} is weakly convergent to δ_0 as $n \to \infty$. For let a_n be the median of μ_n , $n \in \mathbb{N}^*$. Then for every $\varepsilon > 0$ and l > 0 choose $n_0 = n_0(l, \varepsilon)$ sufficiently large so that $Q_{\mu_n}(l) > I - \varepsilon > I/2$ for every $n \ge n_0$. Now, for every $n \in N^*$ there is a number $x_n \in [a_n - l, a_n]$ such that $Q_{\mu_n}(l) = \mu_n ([o, l] + x_n)$. Let A be an open set. If $o \notin A$, then $\liminf \mu_{n,a_n}(A) \ge o$; on the other hand, if $o \in A$, there exists $[-l, l] \subset A$, l > 0, such that $\mu_{n,a_n}(A) \ge Q_{\mu_n}(l) > I - \varepsilon$ for $n \ge n_0$, therefore $\liminf \mu_{n,a_n}(A) \ge I - \varepsilon$ for every $\varepsilon > 0$. Hence μ_{n,a_n} is weakly convergent to δ_0 as $n \to \infty$, i.e., μ_n is weakly essentially convergent to δ_0 as $n \to \infty$.

Conversely, suppose that μ_n is weakly essentially convergent to δ_0 as In other words, there exist constants a_n , $n \in \mathbb{N}^*$, such that $n \to \infty$.

 $|\psi_{n,a_n}(t)| \to I$ as $n \to \infty$ for every $t \in \mathbb{R}$. Therefore $\int_{\mathbb{R}} h(|\psi_{\mu_{n,a_n}}(t)|) d\lambda(t) \to I$

as $n \to \infty$, so that it follows from 3) that $q_{\mu_n} \to I$ as $n \to \infty$.

7) By 5) we have $q_n \to 0$ as $n \to \infty$ iff $Q_n(l) \to 0$ as $n \to \infty$ for every l > 0, and this is true iff $\underset{k=1}{\overset{*}{k=1}} \mu_k$ is weakly essentially convergent.

3. We note that the results given by K. Ito [4], p. 42-49 may be obtained by taking $h(x) = x^2$, $x \in [0, 1]$, and $d\lambda(t) = dt/(1+t^2)$, $t \in \mathbb{R}$. Suppose now that $h(x) = -\log x$, $x \in [0, 1]$, and $d\lambda(t) = dt/\alpha$ if $0 \le t \le \alpha$ and $d\lambda(t) = 0$ otherwise. This special h, considered by A. Ja. Hinčin [3], which leads to the so-called Hinčin functional (cf. Ju. V. Linnik [6], p. 54) does not satisfy conditions (h_1) and (h_2) . The corresponding concentration q_{μ} has a meaning only for those μ 's whose characteristic functions are different from zero *m*-a.s. on $(0, \alpha)$. This explains why this concentration yields only a part of the results given in the preceding Theorem.

4. Finally, we note that the above Theorem also holds in s-dimensional Euclidian space.

References

- C. G. ESSEEN, On the Kolmogorov-Rogozin inequality for concentration functions, «Z. Wahrscheinlichkeitstheorie Verw. Gebiete », 5, 210-216 (1966).
- [2] W. HENGARTNER and R. THEODORESCU, *Concentration functions*. I, Atti Convegno sul Calcolo delle probabilità, Rome, March 1971.
- [3] A. JA. HINČIN, Sur l'arithmétique des lois de distribution, « Bull. Univ. Moscou », Al, 1, 6–17 (1937).
- [4] K. ITO, Stochastic processes; Part I, «Izd. innostr. lit.», Moscow (1960) (in Russian).
- [5] P. LÉVY, Théorie de l'addition des variables aléatoires, 2nd ed. Paris, Gauthier-Villars (1954).
- [6] JU. V. LINNIK, Décompositions des lois de probabilités, Paris, Gauthier-Villars (1962).
- [7] E. LUKACS, Characteristic functions, 2nd ed. London, Griffin (1970).