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Algebra. — A Consideration by Rank of the Matrix Equation
AX;---X,=B. Nota di RonaLD H. Darra e A. DuaNE PORTER,
presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Si determina il numero delle soluzioni di certi tipi dell’equazione ma-
triciale AX; ... X, = B sopra un campo di Galois, nonché il numero delle partizioni di
una data matrice B in una somma di matrici ottenibili ciascuna sotto la forma AXj - .- X,.

1. INTRODUCTION

Let GF(g) denote the finite field with ¢ = p/ elements, p a prime.
Elements of GF(g) will be denoted by Roman letters @, 4, ¢, --. Matrices
with elements from GF(g) will be denoted by Roman capitals A, B,---.
A (n,s) will denote a matrix of # rows and s columns, and A (n,s;7) will
denote a matrix of the same dimensions with rank ». I, will denote the identity
matrix of order 7, and I (%, s ; ) will denote a matrix of 7% rows and s columns
having I, in its upper left hand corner and zeros elsewhere.

Let A=A(s,m;7») and B = B (s,#; ®) with @ <7. John H. Hodges
[3] determined the number of matrices X = X (m,£) over GF(g) such that
AX = B. A. Duane Porter [8] found the number of solutions X (s, 1),
X (Sic1,8), 1<i<a, X,(S41 2) over GF(g) of the matrix equation
AXy .-+ X,= B, with A, B defined as above, @ > 2, and where s, 1<i<a
represents an arbitrary positive integer. We are considering the same type
of problem as A. Duane Porter did in [8], but we are finding the number
of solutions of fixed ranks. John H. Hodges considered similar problems
of fixed ranks in [4] and [5].

We seek the number N(A, B, £1,¢2, -, 4,4, #,) of matrices Xi(m,t ; &),
X1, 858), 2<i<n—1, X, (Zs-1,2; #,) over GF(g) such that

(1.1) AX;..-X,=B,

where A=A (s,m;s), B=B(s,¢; ©), n>2, and o< min (s, 41,2, - S luc1y By
As a corollary to our main result we will also obtain the number
M=M(@C,D,b,t, - tia, k) of solutions Yi(r,tiy; 4,
Y, Grivty tami s tumipr), 2<i<n—1, Y, (t1,m; k1) over GF(g) of the
matrix equation

(1.2) Y;---Y,C=D,

where C=C(m,s;s), D=D(¢,s;®), n>2 and o<min(s, A1, %, -+, 4,1,4,).

(*) Nella seduta dell’r1 marzo 1972.
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First (Theorem 1) a formula is proved which gives N(A,B, 41,22, -+, 2,1, £,)
as a sum involving the numbers N'(I,,Bo,71,%, -, %1, 4,), where
s = rank (A); Bo is the canonical form for B under equivalence of ma-
trices and 71 runs from max (w, A —m 4+ s) to min (41,s). Then (Theo-
rem 2) the number N’ (I, Bo,71,%, -+, %1, £,) is found in terms of certain
exponential sums H (s,#, @ ;2) whose explicit values are known [2, § 8].
We then combine Theorems 1 and 2 to obtain the main result, which is the
value of N(A,B,/%1,%, -+, 4.1,#4,). Finally, in § 5, we consider the
number of partitions of a matrix B into a sum of %Z matrix products, where
each product is in the form of the left side of (1.1).

The methods employed here are similar to those used in [8] and [9]
in the treatment of problems that are similar to the ones that we are now
discussing.

2. NOTATION AND PRELIMINARIES

If A=A (n,n)=(a,;), then ¢ (A) = D a,; is the trace of A. It is easily
=1
shown that if A=A (»,#n), B= B (#,#) and C and D are such that CD
is square then o (A + B) = ¢ (A) 4 ¢ (B) and ¢ (DC) = ¢ (CD).
For ¢ € GF(g), we define

(2.1) e(c) =exp (2mit(O)[p) ; t(e)=c+ct +---+
from which it follows that
(2.2) e(c+6)=-¢e()e(d) and 2 e (¢b) = 3Z Z >>

where the sum is over all 4 € GF(g9). By use of (2.2), we may show that
for B= B (m,n)

g™ ,(B=o0),
o ’<B:|=O)?

where the sum is over all C =C (z,m). The number of sX¢# matrices of
rank 7 is given by Landsberg [6] to be

(2:3) 2 e{s(BO} =

4 s—=i+4+1 f—i41
(2.4) g(s,t,7) =qge-vr [ : :)(?) Do,
i1 ¢ —1

gls,2,00=1.

In particular the number of nonsingular matrices of order =z is given by
(2.5) Em =28 (m,m,m).

Following [2, (8.4)], if B=B(s,?; ), we define
(2.6) H(B,z)=;e{———c(BC)},



[197] R. H. DALLA e A. DUANE PORTER, A Consideration by Rank, ecc. 303

where the summation is over all C=C(#,s;2). This sum is evaluated
[2, Theorem 7] to be

(2.7) <B@-4wzc—omeQWﬂ]g@—wz 2=,

where the bracket in (2.7) denotes the g-binomial coefficient defined for
nonnegative integers » and j by

EEEE €= B I
and g(s—o,#—w,2— ) is given by (2.4). From (2.7) it is clear that

H(B, 2) depends only upon the integers s,#, ® and z so we write H(B, 2) =
=H(s,?,0;2).

Let A =A(z,7). Then, in view of the definition of trace — ¢ (A)=0(—A).
Therefore, by (2.6), for B=B (s,¢;®) and C =C (¢, s; 2),

Y e {o(BOY =X e{—(—o(BOY} = e {—o(—BO)} =
=Y e{—c(—B)CO}=H(B,2).

But —B = —B(s,#;w) and since from (2.7) it is clear that H (— B, )
depends only upon the integers s,#, ®, and 2, we get that H(— B, 2) =
= H (B, 2). Therefore,

(2.8) 2e{c(BCO)}=H(B,s) =H(s,?,0;2),

where the summation is over all C=C (¢, s;2).

3. SOME USEFUL RESULTS

The following results are necessary to some of the proofs of this paper
and are included for completeness.

LEMMA 1. Let D =D (¢,5) be partitioned as D = col (D1, Do) where
Di=Di(k,s) and Do=Des(t—£%,s). For 1 <i<n—2 let S, be a
nonsingular matrix of order t;y1. For 1 <i<n— 3 partition S; as (S; S;2)
where S;j = Siy (tix1, tive ;s tive) and Sig = Sz (tix1, tis1—tiys; tig1 — titg)-
Finally, partition S, 5 as (S,—g,1,Su-s,2) where S, 91 = S,_91(tuo1,#; £)
and Sn_g,g == Sn_z,g (Zn—l s Epel — V4 H ly_1— fc‘) Then

col (S-S, 9,1D1,0) =1(t1,22;29) S+ - - I(tuc2, tue1340-1)Suea L (#_1,2; A)D,

where O denotes a zero matriz of size (t1— to)Xs.
The proof of Lemma 1 is given in [1, Lemma 2].

23. — RENDICONTI 1972, Vol. LII, fasc. 3.
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LEMMA 2.  For any matrix A (s, ty; %),

, ZZ e{c(AZr---Z7,)} =<[f}lg(&'—l,l‘w/éi)]//jI:IOgt,) ’

100 Z,

E‘ 0 8{G<AR11(10,Z‘1;,é1) Sl et Sn—-l I (Zn——lytn;'én> Q;l>}:

RpsSp+58, -1 n

where the summations are over all Z;(ti—1,t:;k),1<i<n, Ri(ty,% ;%)
S;(ti,¢58), 1<j<n—1, and Q,(t,,t. ;.. Rl,Sj,'I <j<mn—1, and
Q, are determined by writing 7Z1,Z2,,1 <i <n-—1, and Z,, respectively,
in their canonical forms under equivalence (7, Theorem 3.7]. The value of
g(s,t,7) is given explicitly by (2.4).

The proof of Lemma 2 is given in [1, Lemma 3].

LEMMA 3. ZLet D and S;, 1<7 <n-—2, be as in Lemma 1. Then
n—1

2 X Xef{o(Zicol (Su ---sn_z,lm,o>>}=(Hgf,.)H<n,s,r;/é1>,
S Spee 74 P9

where r = rvank (D1) ,0 <r <min (k,s), and the summations are over all
Zy="71(s,t1; k1) and all nonsingular S; of order ¢.1,1<7i<n—2.
H(t,s,7; k) is given by (2.7) and (2.8). The value of g,, is given explicitly
by (2.4) and (2.5) and o denotes a sero matrix of size (t1—122)Xs.

The proof of Lemma 3 is also given in [1, Lemma 4].

4. THE MAIN THEOREMS

If A=A(s,m;s)and B=B(s,?;w), let N=N(A,B, &1 ,%, -, 41,4,
denote the number of solutions X1 (7 ,#1; &1), X, (ti-1,2:3¢), 2<i<n—1,
X, (te1yt; k), with @ <min(s, & ,%, -, %_1,4) and 7#>2, of the
matric equation (1.1). If we take A and B in their canonical forms under
equivalence [7, Theorem 3.7], we obtain the equivalent equation

(4.1) RI(G,m;s X1 X,=1(s,¢;0) =By,
where R is a fixed nonsingular matrix of order s. Partition X; as

X1 = col (Xu s X12) where Xj1 = Xn (S s 1‘1) and X = Xjo (m —_—s, l‘1).
Then (4.1) simplifies to

(4,2) RX11 Xz e X,, = B() ,

which is clearly independent of Xj2. A detailed consideration of (4.2) and
its relationship to (4.1) and thus to (1.1) leads us to the next Theorem.

THEOREM 1. Let A=A (s,m;s)and B= B (s,t; ). Then the number
N=NA,B,&,%, -, ti1,k) of solutions X;,1<i<n with
o < min(s, kL, ta, b1, k), of (1.1) is given by the reduction formula

min (s, £,)

(4-3) N = Z g g (m—s,ty—ry, ky—r) N,

71=P1
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where Bo=1(s,?;0), py=max (o, lr—m + ), n>2, and X;, 1<7<n,
is as defined above (4.1). N' =N'(I,, By, 7, %2, -, tu1, £,) is the number
of solutions Xn,X;,2<i<n—1,X,, of (4.2) of fixed ranks ry,¢,,
2 <7< n—1,k,, respectively, with oy <r < min (s, £). Xu s defined
above (4.2) and g (s ,t,7r) is given explicitly by (2.4).

Proof. Let »; be an arbitrary integer such that p; <71 < min (s, 41)
with p; = max (0,1 —m +s). Let Xu,X;, 2<7<# be an arbitrary
solution of (4.2) of ranks »,¢, 2<i<n—1,#£,, respectively. Then
the number of associated solutions X; = col (Xu, X12), X;, 2 <7 <,
of (4.1) of ranks 4;,¢;, 2<i<n—1,#,, respectively, is just the number
of choices of Xip (m — s, #1) for which X has rank £1. The number of choices
of X1z is given by A. Allan Riveland [10] to be

(4-4) g g (m—s 8y —ry, bi—7y) .

Every solution X;,1<<7Z<{#, of (4.1) is associated with a unique
solution Xn, X;, 2<7<#n, of (4.2) and the number of X;, 1<7<,
produced by a fixed X1, X;, 2 <7< #, isgiven by (4.4), the latter expression
depending only on the rank of Xu. Thus, if we multiply the number of
solutions of (4.2) of fixed ranks »,,#, 2<:<#n—1,£4,, respectively, by
(4-4) and sum over all p; <7y < min (s, &), we obtain the number of solu-
tions of (4.1) and so equivalently of (1.1). The resulting formula is (4.3) so
the Theorem is proved. 4

In view of Theorem 1, to find N we must be able to find the number
N'=N'(I,,Bg, 71,8 + -, ts1, #,) of solutions Xy; (s, 2 ;77), X; (tiz1, 25 2),
2<i<n—1,X,{-1,2;4,) of (42). Since R is a fixed nonsingular
matrix of order s, then if we let RX ; =27y, (s, #;;71), (4.2) is equivalent to

(4-5) ZnXs - X, =1(s,2;0)=Bo.
THEOREM 2. Let Bo=1(s,¢; ®). Then the number N' =
=N"(I,,Bo,71,%, ", tue1, £,) of solutions Xy (s,¢;7), X;(t:i_1,2%;2),

z

2<i<n—1, X,(ti1,2; 4,), of (4.2), where & < min (5,71, 25, *, tu_1, Z),
is given by
(4-6) N=[g@t—o,t—Fk,  t—k)g g g (trr,t, k) -

k min (%,,,5)

n—2 ”n
'I_Ilg(fj’fﬁl,l‘ﬂl)rll ¢ — ¢ Z} H@,s,7;m)H(s, £,,057),
= = r=

where g (m , ¢t ,7) is given explicitly by (2.4) and H (s , ¢, w ; 2) is given in terms
of g(m ,¢t,7) by (2.7) and (2.8). The product over j is defined as 1 if n = 2
and the product over i is defined as 1 if k, = o.

Proof. In [1, Theorem 1], we found the number of solutions Yi (s, #1 ; 41),
Yi(ticayt:5t), 2<i<n—1, Y,(t.-1,%;%,), of the matrix equation
Yi1---¥,=B, with B=B(s,¢;0) and o <min(b1,%, -, %1, £,).
But if we make the substitution £, =7;,Z;;=Y; and X, =Y,, 2<i<#»,
then (4.5), and hence (4.2), is equivalent to the matrix equation Y; ---Y, = B.
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Therefore we have found the number of solutions of (4.2) and (4.6) is the
result that [1, Theorem 1] gives us.

Now, by combining the two previous Theorems, we obtain the desired
result.

THEOREM 3. Let A=A(s,m;s) and B=B(s,¢; 0). Then the number
N=NA,B,&,t2, -, ti1, k) of solutions Xa(m ,t1, k1), X,(t;—1,¢; 1),

2<i<n—1, X, 1,t,4,), with o<min(s,Ait2, -, t,_1,%,) and
n>2, of the matrix equation (1.1), is given by

n—2 'én
(4‘7) N= [g(t,,_l,z‘,,é”)g(z,‘—m,t—,én,z—,é”)/g,g’k”] r[lg(tj)tj-ﬂ ’rj+1) l_Il (qt_qi—z)'
J= i=

min (s,4;) min (&,,,5)

=g (m—s,ty—r, ki—r) 2 H(,s,757) Hs, &,,0;7)|,
) r=0

71=P1

where py = max (0, &y —m +5) and ry is the rank of Xn with o) < <
< min (s, £1). Xu is as previously defined in the sentences following (4.1).
g(m ,t,7r) is given explicitly by (2.4) and H (s, ¢, o ; 2) is given in terms of
gOm,t,7r) by (2.7) and (2.8). The product over i is defined as 1 if k, = o and
the product over j is defined as 1 if n= 2.

Now we will determine the number M =M (C,D, 41,%, -, 4,1, %,)
of solutions Yi(¢,%i-1,%,), Y,@—it1,ti—i,lu—iv), 2<i<n—1I,
Y, (t1,m; k1) of (1.2), with C=C(m,s;s), D=D(,s;w), »>2 and

o <min (s, A1,%, -+, %1, #,). Equation (1.2) is equivalent to the matrix
equation
(4.8) C'Y,.---Yy=D'".

But (4.8) and (1.1) are equivalent so the following corollary is a direct con-
sequence of Theorem 3.

COROLLARY 1. Let C=C(m,s;s) and D=D (¢,s5s;w). Then the
number M =M (C,D, &1,t2, -, th1, k,) of solutions Y1(t,t,-1; #,),
Y, Coivt s buomi s tnmivr), 2<2<n—1, Y, (t1,m; k1) of the matrix equation
(1.2); with o <min (s, kr,ta, ,ti_1,k,) and n>2, is given &y (4.7).

5. THE GENERAL PARTITION
Let B=B(s;2;0). For 1<k <A let A,=A,(s,my;s), Xp1=
= Xp1 (8015 1) Ky = Xai(Ggic1, B3 a), 2<¢<w—1, and

Xy = Xany Camy—1, 25 ). We seek the number of ways B (s,?; ») may
be partitioned as

A
(3.1) kzl(Ak Xp1 o Xy = B,
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where the matrices appearing in (5.1) are such that the matrices can satisfy
(5.1). If we take A, 1 < £ < %, and B in their canonical forms under equi-
valence [7, Theorem 3.7], we obtain the equivalent matrix equation

)
(5.2) kz{(R’* I(s,m;8) Xaq -+ Xamy= Bo,
where Bo = I (s, #; ®) and where for each 2,1 <% <%, R, is a fixed non-
singular matrix of order s. For each 4,1 < £ < 4, partition X;1 as X;,; =
= col (Zk,l , Zk’g) with Z,g 1= Zk 1 (S tz, 1) and Zk’g == Zk’g (mk _ ‘, tk’]).
Then (5.2) may be simplified to

(5-3) }:: RpZp1 Xzz -+ - Xg,my) = Bo,

which is clearly independent of Z; o for each 4, 1 < £ < /4. A detailed con-
sideration of (5.3) and its relationship to (5.2) and thus to (5.1) leads us to
the following Theorem.

THEOREM 4. Let B=B(s,2;0). For 1< k<h let A, and X,;;,
1 < i< m,, be as defined above (5.1). Then the number N of ways B can be
partitioned as in (5.1) is given by the veduction formula

min(s,jk’l)
G4 N= X ([!_Il eI =) g (my— S, ta) — Ta1 5 Ja —7/&,1)} Mﬁ> ,
g1 =ep,1 \ L %=

where for 1<k <h, p“=max(o,j“—~mk+s) For 1 <k<h,r,,

is the rank of Zy,, with o, <7, 1 <min (7, , ). M, 2s the number of solu-
tions of (5.3) of fixed ranks r Voo by 2 <1 <m—1, and p, for 1 <k < 4.

g(s,t,B) is given explicitly by (2.4). T /ze summation in (5.4) indicates a
summation over all possible r, | with o, , <7, <min(s,j, ) and 1 < k< k.

Proqf For each 2,1 <A <4, let 711 be an arbitrary integer such
that o, <7, , <min(s,/, ) with p,, as described in the theorem. Let
Zia, X,g iy 2<7<m—1;Xs,,, 1< £<h be an arbitrary solution of
(5.3) of ranks 7, ,,¢, ., 2<i<m—1;p, 1 <£k<h, respectively. Then
the number of associated solutions X1, X, 2<7i<7,—1; King,
1< k<h of (5.2) of ranks Janr e 2<i<m—1;p,I <Ek<L%?i,
respectively, is just the number of choices of Z;, for which X, has rank
Jigr 1<k <h

Fix 2,1 < % < /4. Then, proceeding in the same manner as A. Allan
Riveland [10] did to obtain a similar result, we find that the number of
Xi1s Xppiy 2<7<m—1; X4, produced by a fixed Z;;,X;,;, 2<7/<
<m—1; Xy, is given by

(5-5) H, = rk’l(mrs)g Me—S s 81— 74,15 J01—75,1) »

where g (s, #,B) is given explicitly by (2.4).
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Therefore, the number of X, 1, X, ., 2<7 < my—1; Xy, 1< k< 4y
produced by a fixed Z,;, X, ,, 2 <7 <n,—1; Kimys 1 < k< h, is given by

(5.6) !;[1 H,.

Thus, if we multiply (5.6) by the number M, of solutions of (5.3) of fixed
ranks 7, 1,2, ;, 2<i<m—1; u, 1 <A<k and sum over all 73,1 such
that p, 1 <7, <min(s,s,;) and 1 <4 <%, we obtain the total number
of solutions of (5.2) and so equivalently of (5.1). But if we do this the resulting
formula is (5.4) so the Theorem is proved.

The next Theorem gives us the value of M,.

THEOREM 5. Let Bo=1(s,¢;0). Then, for 1 <k < h, the number
M, of solutions Zy1 (s, %1572, Xpi (i1, bl 2<i<m—1,
Xayng Crmg—1, 5 1) of (5.3) 4s given by

min (s,#) Y]

(5.7) M, =g~ ;} H(S,t:w;z>!__11g<lk,nk—l»t:p‘)'
/nb—-Q

. (11 & Gris tayivt,s l‘k,z'+1)> H#a, s, w70,

where 4,1 < 7,1 < min (s, ;1) and p,; = max (0 a1 8. g(s, ¢, o)
is given explicitly by (2.4) and H (e ,f,7; p) is given in terms of g(s,2,w)
by (2.7) and (2.8). The product over i is defined as 1 if n, = 2, Sor 1 < B < A

Proof. Let Bo=I(s,?; ). For 1<A<4, let P.(X)=R,Z;1X;s0-- DO
Then, in view of (2.3), M, may be expressed as

[gr00) 2]

where' the sum over Z, ;, X, ; indicates a summation over each Ziay X
2<j<m, 1 <k<h as these matrices are defined above, and the sum
over C is over all C =C (#,s). By use of the properties of the exponential
function and the trace of a matrix given in Section 2, by (2.2), and since the
sum over Z,,, X, : is distinct for each 7,1 <7< /%, we obtain

Mi=g—= 2, Xe

Zp1Xg,; C

)

h
M/L=Q_”; e{—c(BoC)} !_Ilz > e{o(R;Z;1X;,5 - X;,,,0) 3

= k,llxk,z"”rxé,nk
Now for each 4,1 </A<#%, R, is a fixed nonsingular matrix of order s.
For each 4, 1 < %<4, as Z,; runs through all Zin (S t137,1), RuZyy
also runs through all Z,;(s,%,,;7,,) in some order. Therefore, since
6 (AB) = o (BA) for AB square, we have that
A

Mkzq_”%: e{—G(BO(:)} H Z e{G(CZkyIXk:Z'..Xkﬂ%>}'

A=1Zp,1:%p 0 X,
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For 1 <£2<4, let
7y —1 ny—2
U,= g (tk,nk—l v, P*)/gt II1 8ty ; 81_11 F4 (l‘k,s 2 Lh541 > 2a,541) -
7= phe

Then, by Lemma 2 and the fact that ¢ (AB) = ¢ (BA) for AB square, we
obtain

M, = ”-‘l;e{-——c(BoC)}!;IlUk 2 e{c(Zy1Ts1-

Zk,l’Tk,lisk,l’ ] Sk,nk—-%QZ‘,nk

TGt %) Sen e Sk L (Ba,0p-1,25 1) Q;,l,kC)} )

where T, ; is a nonsingular matrix of order #,; and S, ; is a nonsingular
matrix of order #,,11 for 1 <7 <#,—2. Qu,, is a nonsingular matrix
of order ¢ that is determined by writing X, ,, in its canonical form under
equivalence [7, Theorem 3.7]. For fixed nonsingular T, ; of order #,,, as
Zy,1 runs through all Z,;(s,%,1;7:1), Zs17Ts1 also runs through all
Zy1(S,%,1;57,1) in some order. Let Uy = U, &4~ Then, since there are
&y, such T,y’s, we are led to

Y]
M, = g—st; e{— 3o (BoC)} L[lug .

Z e{0(Ze 1 Lt 225 %,2) a1 *Stomg—2 L mp—1, 23 10) QZ}%C»-

Zp, 158,107 5Sh,np 2 Qe

We now divide the sum over C into successive sums over all C (¢, s ; 2) for
0 <z<min(s,#), and obtain the following for M,.

min(i,t) Y]
Mi=g= 2 2 e{—c@BO}]IU:-
=0 Clhe) b=l
> e{6Zi1 11, %,25%,2) St St L Grng—1,23 ) Qi OF-

Zp, 155,15 0952,y —2: 0,y

For fixed nonsingular Q,, of order # as C runs through all C (¢, s;2),
Qs ,I%C will also run through all C (¢, s; %) in some order. Let U; = Ujg,.
Then, since there are g; such Qy,,,’s, we have that

min (s,#) Y/
(5-8) My=g= 2 2 e{—o®O}IU;-
=0 C(¢s5;2) k=1

. e{c(Zi 111,25 4,2 St Stmg—2 1(imp—1, 2310 C)} .
Zk,lvsb,ls"'ssé,nk_z

Fix C(#,s5;2). Then for each 4, 1 <#% <#%, npartition C(¢,s5;2) as
C(,5;8) =col(Ch,1,Cp0) with C; ; =C, ;1 (n,5) and C; 3 =C, o (t— 1., 9).
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Then, by Lemma 1, for each £, 1 < 4 < /, the inner sum on the right of
(5.8) is equal to

(5.9) SZ, > Zze{c;(zk,l-col(sé,l,l---sk,n,e_z,lck,l,o))},

2,1 Stony—2 Z,1

where, for 1 <i<n,—3, S, = S;.1, Sy,ie) With S, .1 =S, i1,
Y4iv2; thiye) and  where Stnp—2 = Stnp—2.1 St,ny—2,2) With Stong-2,1 =
= Stup—2,1 (Ptnp—1, &3 ). O denotes a zero matrix of size (24,1 — 25,9) X 5.
Now it is clear that

(5.10) rank (col (S4,1,1 * ** S,n;—2,1Cp 1, 0)) = rank (C, ).

Let rank (C;,) = 7,,0< 7, <min(z, p). Then, by Lemma 3 and (5.10),
(5.9) is equal to

ny—1
(5.11) ( | J I i)H G158, T3 72,0) -
=2

Thus, by substituting (5.9) and (5.11) into (5.8), we obtain the following
. np—1
for M,, where U} = U, (Hg,kﬂ.) .
=2

min (s,) »n
M,=g~* %‘f) C(fZ ) e{— 0o (BoC)} !11 U;' H (CRT 72,1) -

In view of (2.6) and (2.8),

min (s, £)

3
(5.12) M,=g— z;) H (Bo,2) | IUZ' H@#y, s, ;71

min (s,2)

A
=g~ Zo H(,t,0;2) ] IUZ’H(QJ:S:T&?”/&,I}‘

Thus, if the value of Uy’ is substituted in (5.12), we obtain (5.7) so the Theorem
is proved.
The desired result is an immediate consequence of Theorems 4 and .

THEOREM 6. Let B=B(s,?;w). For 1 <hk<h, let A, and
Xiir 1 <7<y, be as defined above (5.1). Then the number N of ways B
can be partitioned as in (5.1) is given by the formula

min (5178, 1) h s .
(5.13) N= Z ([r_[ g )g(mk_s » BT 70,1 ]é,l"‘“”k,l)] :

"k,1=Pk,1 -
min (:,t) % |‘ np—2
* 9_” 2{) H(‘f:t’m;z)!_—ll Lg<tk,nk—1)t’ EL)( g(l(k,j’té,j+1)t'é,j+l>>H(tk,l)s: Tk”’k,l)};)»
g= = =1
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where for 1<k <h, pp1=max0,1—my+Ss) and g <71 <
<min (s, 1) £(s,¢,B) is given explicitly by (2.4) and H (e ,f,7; p) is
given in terms of g (s, ¢, w) by (2.7) and (2.8). The product over j is defined
as 14f my=2, for 1 <k <h. The first summation in (5.13) indicates a
summation over all possible v, for 1 <k < h.
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