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Fisica matematica. —- A  mathematical model fo r  physical theories. 
N ota I di E nzo T o n t i0 , presentata ^  dal Socio B. F inzi.

RIASSUNTO. ■—■ Si presenta un. modello m atem atico per le teorie fisiche basato sulla con­
siderazione di coppie di spazi funzionali messi in dualità da funzionali bilineari e di corrispon­
denze tra  questi spazi. Ognuno di tali spazi funzionali è relativo ad una variabile fisica e le 
corrispondenze rappresentano le equazioni che legano tra  loro le diverse variabili. D alla 
stru ttu ra  degli operatori che descrivono tali corrispondenze si deducono, sotto form a di 
teoremi, le principali proprietà m atem atiche del modello.

i.i.  Introduction

M any physical theories exhibit a common m athem atical structure th a t is 
independent of the physical contents of the theory and is common to discrete 
and continuum  theories, be they of classic, relativistic or quantum  nature d). 
The starting point of this structure is the possibility of decomposing the fu n d a ­
m ental equation  of m any physical theories in three equations, known in 
classical fields of the m acrocosm as definition , balance and constitutive equations, 
whose operators enjoy peculiar properties. The properties are as follows: 
the operator of balance equation is the adjoint, with respect to an opportune 
bilinear functional, of the operator of definition equation (if the last is linear) 
or of its G ateaux derivative (if it is nonlinear). M oreover, the operator of 
constitutive equation is sym m etric (when it is linear) or has sym m etric 
G ateaux derivative (when is nonlinear). Such a peculiar decomposition per­
m its us to obtain a profound introspection into the m athem atical structure of 
a theory. The fact th a t this decomposition can be achieved in a large num ber 
of physical theories and the fact th a t when it exists we can deduce easily a 
large num ber of m athem atical properties, suggest constructing a m athem atical 
model for physical theories.

1 . 2 .  The m athem atical model: th e  assumptions

Let us suppose we have:
1) a first set of n  functions of space and tim e coordinates (pÂ(t 

(with k  =  I , 2 , • • • ,  n)., tha t will be called configuration variables. T hey (*) (**)

(*) This work has been sponsored by Consiglio Nazionale delle Ricerche.
(**) Nella seduta del 15 gennaio 1972.
(1) We refer the reader to the paper On the mathematical structure o f  large a class o f  

physical theories, «R end. Acc. Lincei», 52, 48-56, denoted by [1].
(2) W ith this name we indicate the field equation in field theories, the equation of motion 

in mechanical theories, i.e. the equation relating the configuration of the system with the 
sources.
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can depend only on tim e variable or on space variables <4> can be of finite 
or infinite num ber. T hey can be real or complex functions, can be the compo­
nents of a vector, a tensor, a spinor or m ay do not have special transform ation 
properties. E very  given set of these n functions, will be denoted w ith 9. 
A ny linear function space of elements 9 will be denoted with <D and called 
functional configuration space.

2) a second set of n functions Gk ( t , x 1 , ;r2 , x3 4 5) (with k =  1 , 2 , • • •, n) 
tha t will be called source variables. T hey depend from space and time coordi­
nates have the same tensorial order, the same tensorial sym m etry pro­
perties and the same real or complex nature of configuration variables. Every 
given set of these variables will be denoted with g. A ny linear function 
space of elements g , denoted by H, will be called functional source space.

3) a bilinear functional defined on the elements of the two function 
spaces and £  th a t will be denoted (a , 9). It m ust be such th a t for every 
cr 6 2 , different from the null element E, there exists at least one 9 such that 
(cj , 9) =j= o and analogous requirem ent on 9. U nder these conditions the 
two spaces are said to be p u t in duality by the bilinear functional [2, p. 88].

4) a topology on the spaces ® and 2  tha t m akes continuous every 
linear functional (cr0 ,9 )  with cr0 G 2  and (g , cpQ) with 90 e <£. It can be 
shown th a t for every linear functional /  [9] continuous with th a t topology 
a unique element a / e S  can be found so that I [9] =  ( g 1 ,9 )  [2, p. 91].

5) a th ird  set of m  functions uh ( t , x 1 , x2 , x 3) (with h =  1 , 2 , • • •, ni) 
of space and tim e coordinates, with m > n  th a t we shall call first kind  
variables. Every particular set of such functions will be considered as an 
element u. A ny linear function space formed by elements u will be denoted 
by U.

6) a fourth set of m  functions vh ( t , x 1 , x2 , x 3) (with h =  1 ,' 2 , • • •, m) 
of space and tim e coordinates that we shall call second kind variables such tha t 
every vh has the same tensor nature and the same tensorial symmetries of the 
first kind variables uh. E very particular set of such functions will be denoted 
by u. A ny linear function space formed by elements v will be denoted 
by V.

7) a bilinear functional defined on the elements of the two spaces U 
and V denoted by (y , ifi tha t satisfies the same requirem ents of point 3).

8) a topology for U  and V  spaces with the same requirem ents of 
point 4).

(3) As the lagrangian coordinates in mechanics and the extensive param eters in the 
irreversible therm odynam ics of discrete systems.

(4) As in tim e-independent field theories (static and stationary fields).
(5) Source variables can depend on space and time coordinates either directly as 

when they are assigned (fixed or impressed sources) or indirectly as when they are linked with 
configuration variables of other systems (interaction) or with those of the same system 
(self-interaction).
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U p to this point we have two pairs of function spaces in duality  equipped 
with suitable topologies. The need to introduce a topology arises from 
the fact th a t we wish to treat subjects as stability, perturbations, convergence 
of iterative m ethods, error bounds in approxim ate m ethods and existence 
of solution. A bout m appings among these spaces we suppose to have:

9) a m apping D, generally nonlinear, between some subset c3) (D) C O 
(its domain) of the functional configuration space and a subset St (D) C U 
(its range) of the function space U  of first kind variables. W hen m  >  n the 
operator D is a gradient-like operator. The equation u =  D9 will be called 
definition equation;

10) a m apping C, generally nonlinear, between a subset c3) (C) D St (D) 
of the U -space and a subset St (C) of the V -space. The operator C will be 
supposed symmetric, if linear, i.e. (Cur, u ”) =  (Curr, u')  or with symmetric 
Gateaux derivative, if nonlinear, i.e. (Cu u ', u ")  =  (Cu u " , u '). M oreover it is 
supposed tha t C does not contain the configuration variable 9. The equation 
v =  Cu will be called constitutive equation.

11) a linear m apping B between some subset 3) (B) Ç St (C) of the 
V -space and a subset St (B) of the  2 -space tha t be the adjoint of the m apping 
D (if D is linear) or be the adjoint of its linear G ateaux derivative (if D is 
nonlinear) we shall use the notations B =  D and B =  IV  respectively.

(6) In  physical theories the operator D is generally not continuous, being often a diffe­
rential operator w orking on a Banach space (in particular on H ilbert and Sobolev spaces). 
It follows tha t the G ateaux derivative is not continuous in this case. Some A uthors speak 
of G ateaux derivative only when continuity  is assured [7, p. 40] [8, p. 114]. This usage is 
very restrictive: we adhere to the more general definition (see for ex. T apia  in [8 , p. 51]).
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W hen m  >  n the operator B is a divergence-like operator. The equation 
Bv =  g will be called balance equation.

W e em phasize the fact th a t of the three m appings we shall take as 
prim itive, only two of them  are independent i.e. D and C. In  the sequel will 
be shown th a t the m athem atical properties of the model rest upon the p ro­
perties of these two operators. T he scheme of fig. 1 summarizes w hat we have 
said up to now.

1.3. The m athem atical m odel: f i r s t  p roperties. 
a) Fundam ental equation

The sequence of m appings D : ® | - » U , C : U | - > V , B : V |->2  induce 
a m apping F  =  BCD : <D |-> 2  we shall call fundam ental mapping. The 
corresponding fundam ental equation has the form

(1.3.1) DC I) 9 =  a D!p CD9 — cr

in the linear and nonlinear case respectively. T he fundam ental m apping F 
enjoys m any properties: we shall consider in this paper the case in which D 
and C are linear operators. In  the second part we shall deal with the nonlinear 
case.

Theorem i: I f  D and  C are linear operators the operator F  is symmetric. 

Proof.

(1.3.2) <F9 ',9">  -  <DCD9 ',9"> =  <CD9', r>9"> -  <CD9 ", D 9 '> =  <DCD9",9'>.

But D D D  [9, p. 168] and then if 9 "  e 3)(F)

(1.3.3) <F9 ' , 9") =  (DCD9" , 9 ') =  <F9 " , 9 ') .

From  the sym m etry of F  follow two properties: they are

Theorem 2 (v a r ia tio n a l form ulation): i f  the operator F  is symmetric 
and g does not depend on 9, the solutions of the fundam ental equation, when 
it exist, make stationary the functional

(.1.3.4) S [9] -  2  <CD9 , D 9> —  («T, 9>.

Proof

(1.3-S) SS [9] =  <CD9 , D§9> —  (a , 89) -  (DCD9 — (T , 89) =  0 .

This theorem , stated in other words, asserts th a t the fundam ental equation 
is the E uler-L agrange equation of an action functional. W e thus see th a t 
the existence of an action functional for the fundam ental equation, th a t is 
assumed as postulate in field theory, is here deduced as theorem.
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Theorem 3 (rec ip ro c ity  theorem ): i f  the operator F  is symmetric let 
us be a' and a" two different sources and  <p', 9"  two corresponding solutions then

( 1-3-6) <®',9 "> =  <a",<p'>.

Proof:

0 -3-7) (<*'. <P") =  (Fcp', 9 "> =  (Ftp", cp') =  (a", 9 ').. (q.e.d.)

A  frequent case is th a t the operator C be definite positive. W hen this happens 
we have the following properties:

Theorem 4 (minimum of th e  fu n c tio n a l): i f  C is a positive definite 
operator, i.e. (Cu , u) >  0 fo r  u =J= 0 the solution of the fundam ental
equationi when exists, makes minimum the action functional S of Theorem 2.

Proof : being SS [cp] =  (DCDcp — a , Sep) will be 

(1.3.8) 82 S [9] =  (DCDS<p, §9> =  (CDScp, D89) =  (C8u , 8u) > o .

Theorem 5: i f  C is a positive definite operator the fundam ental operator 
has the same null manifold of the definition operator:

&l(F) =  &l(D)
Proof.

0  -3-9) 90 e (U  =» F% =  o => (F9q , <po) =  (CD9q , D 9q) =  o =>

=> Dcpo =  o 9q =  9 1 (D)

(1.3.10) 9()e 9 1 (D) => D 9q =  o CD9o =  o => D C D 9q =  o =>

=* F<P0 =  o => ? 0 =  9 1 (F) .

From  this theorem  follows as a lemma the

Theorem 6: (uniqueness). I f  the operator C is positive definite and 
the operator D has no null manifold, the solution of the fundam ental equation, 
when exists, is unique.

The existence of a null m anifold of the definition operator D implies the 
existence of a com patibility condition on the source term  cr irrespectively 
of the positive definite character of the operator C.

Theorem 7: i f  the definition operator D has a null manifold, denoted with 
90 — Lx the general solution of the homogeneous equation D9 =  0 then in 
order that the fundam ental problem admits a solution must be L a =  0 (7). 

Proof'.

(1.3*10  DLx =  O => LD =  o =» LDCDcp =  L a =  0 .

(7) Because the sym m etry of C does not enter in this theorem  while it is essential for 
the variational form ulation (see Theorem  2) we see tha t the link between gauge invariance 
and conservation laws is essentially of non-variational nature. N either theorem  requiring a 
variational principle is then very dem anding.

13. — RENDICONTI 1972, Voi. LII, fase. 2.
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T he property DLy =  o is com m only known in physics as gauge inva­
riance. The theorem  establishes a link between the gauge invariance of first 
kind variables and the existence of com patibility conditions th a t usually 
m ean conservation laws [3].

1.4 The m athem atical model: b) C anonical form

I f  the constitutive m apping is one to one we can consider the inverse 
m apping C-1. In  this case we can reduce the three basic equations to the 
following two equations

(i-4 -O D ç =  C~1z> , Dv =  a .

These two sets will be called the canonical system.

Theorem 8 (v a r ia tio n a l fo rm ulation): the solutions of the canonical 
system, with a assigned, make stationary the functional

(1.4.2) 5 [9 , v] — (v , Dcp)------ (v , C"1 v) —  (ct , <p)

Proof.

(1.4.3) SS [9 , v] — (8v , Dcp — C -1 v) +  (De/ —  <r , §9) =  o .

T he functional S [9 , v\ will be called the canonical action functional. 
T he canonical equations can be written in a m atrix-differential form 

as follows

0 D 1 cr
L D — C“ 1 V 0

I f  we introduce two vectors <J^=(9i • - , vm) and x =  (p i , • • •, ;
o , • • •, o) pu tting

( 1-4-5)

the canonical 

(1.4.6)

0 D
D 0

system  can be written

K =  

as

o o 
o~ — C -1

Li> +  K ^ =  x .

Often D is a first order linear operator: in this case the m atrix—differential 
operator L  can be decomposed in the form

< ■ -« )

where L a denotes some square matrices of (m +  n f  elements. T he canonical 
system  then assumes the typical form

2 a L a ^ r +  + K +  =  X(1.4.8)
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used in the m atrix-algebraic approach to the relativistic theory of particles 
of arb itra ry  spin [4, p. 378] [5, p. 270] [6, p. 143].

T h e o r e m  9 ( s y m m e t r y  o f  t h e  o p e r a t o r s  L a n d  K). The m atrix- 
differential operator L  and the operator K  are symmetric with respect to the 
bilinear functional

(M -9) (X . +> =  » <P> +  {v . u).

Proof'.

(1.4.10) < L f , <j>") =  (Dz/, <p"> +  {v", D 9') =  <*', Dç"> +  (Dz/", 9 ') =  < L f f  >

(1.4-11) <K(|/' =  <— C -1 v ' , v") =  {—  C -1 v" , v') =  < K f ' , 4/')

U sing the bilinear functional (14.9) the canonical action functional 
(1.4.2) can be written

(14.12) S [ 4 / ] = | ( L 4 / , 4 / ) + i - ( K 4 / ) 4 / ) - ( x .4/>

(the proof is straightforw ard).
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