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Topologia. — An axiomatic topological characterization of Hilbert

space. Nota di JoHAN SwaRrT, presentata © dal Socio G. SANSONE.

RIASSUNTO. — Recentemente J. de Groot [3] ha dato una sufficiente caratterizzazione
topologica assiomatica degli spazi I” [cubo metrico 7 dimensionale], R” [spazio euclideo
7 dimensionale], I® [cubo di Hilbert], S” [sfera » dimensionale] e P” [spazio proiettivo
7 dimensionale].

Lo scopo di questa Nota & di dare una caratterizzazione topologica assiomatica di
R [prodotto di un’infinita numerabile di rette reali] basata su una veduta e sul metodo di
J. de Groot.

Gli assiomi di J. de Groot per I*° sono modificati per il caso non compatto.

In vista del noto risultato di R. D. Anderson che lo spazio di Hilbert & omeomorfo col
prodotto di un’infinita numerabile di linee rette si ottiene la caratterizzazione topologica dello
spazio di Hilbert [Vedere R. D. Anderson [1], ¢ R. D. Anderson-R. H. Bing [2]].

Two basic concepts introduced by J. de Groot are the following:

A topological space X is said to be 2-compact if there exists an open
subspace for X such that every subbasic open cover of X has a subcover
by at most two elements. (In this connection we would like to mention a
conjecture of J. de Groot, proved by J. L. O'Connor [5] which states that:
‘“every compact metrizable space is 2—compact ).

Secondly, a family & of open subsets of X is called comparable if for
all So,S1,S2€§ the following property holds:

SouS =X

SIES
SouS =X ,=> ke

where “S15 S stands for “S;1CSz or S10S2”.

A basic property of I*(I") is that I*®(I") is 2—compact relative to a
comparable open subbase. On the other hand R*(R") is not 2—compact.
However, the open subbase § of R®(R") consisting of all sets of the form
p7'(— o0, a) and p;'(a, ), a€R and all 7 has the property that every
open cover of the space which contains at least one member of the form
#7' (o0, a) and one of the form p;'(a, o) for each ¢ has a subcover by
two of these open sets.

Clearly § is also comparable.

The idea of looking at such covers was inspired by the concept of
““ pairwise open covers ”’ as used by Fletcher, Hoyle and Patty [4] in their
definition of ‘ pairwise compactness’ for bitopological spaces. The above
observation enables us to use J. de Groot’s proof as a model for ours.

(*) Nella seduta del 12 febbraio 1972.



[125]  JoHAN SWART, Az axiomatic topological characterization of Hilbert space 167

The Author is sincerely grateful to prof. J. de Groot and dr. A. Verbeek
for having made available to him the, as yet unpublished, results referred
to above. The paper was written while the Author was a research student
of dr. R. J. Wille. The problem of characterizing Hilbert space was suggested
by dr. R. J. Wille whose many helpful suggestions and encouragement have
made the writing of this paper possible.

In proving the Theorem below we work with closed subbases. By a
linked family § of subsets of X we shall mean a family with the property
that the intersection of any pair of members is non-empty.

THEOREM. A topological space X is homeomorphic to the countable product
of real lines if and only if X satisfies the following conditions:

(1) X s Ti;
(2) X s connected,;
3) X has a countable closed subbase & which does not contain X nor ®

and which satisfies (4), (5) and (6);
4) S is comparable, i.e. VS ,S1,S52€ 8,
SNS = /
SNSe= |
Let 8 denote the family of all maximal linearly ordered (by inclusion) subsets E
of &
(s) VEe¢&, NE=® and UE = X;

6) All linked §CS which satisfy SOE==® and E¢5 VE€8 have
the property that NS :}: D.

=55 S;

Proof. It is clear that HR and HR satisfy the above conditions—a

suitable closed subbase consists of all p; <——oo,r] and p;'[r,00) for all 7,
where 7 is a rational number.

Suppose then that X is Ti, connected and has a closed subbase & which
is countable, does not contain X nor @, is comparable and satisfies (5)
and (6). The proof is split up into various Lemmas, starting with an important
separation property and following the proof of J. de Groot.

LEMMA 1. VS €S, Vx &S 3IS'€8 such that x€S' and SO S'= D,

Proof. Let S€8, x€ X—S and consider 1 = {T |xe T€8}. Since X
is Ti, 7==® and in fact Nt = {x}. Also t U{S} contains a member of
each E € 8 (by (5)) and no E is contained in © U{S}. Now EC~ contradicts
NE = ®. Suppose next that S € E¥ and that all members of E* other than S
are contained in 7. By linear order in E* this would imply that S is contained
in every other member of E* and hence contradict NE* = ©.

Thus VEe€é&, E¢ ruU{S} If tU{S} is linked it follows by (6)
that N (v U{S}) ==®; hence x €S, a contradiction. Hence U {S} is not
linked, i.e. there exists S’€ v with ¥ € S’ and such that SNS' =
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LEMMA 2. VS,S'€S, SAS'= & = IT, T €8 suck that T'AS — O —
=TNS, TUT'=X, SST and S'ST.
Proof. Since X is connected Ixe X —SU S/,

By Lemma 1 3T, T€¢ such that x € T'NT and SNT' = ® — S'AT.
By the comparability of §,

SNS' =0

SST.
TAS =@ | ~ >

However x€T, x €S and so SET.
Similarly S’ §T.
Furthermore TUT' = X:

Suppose not, then Iye X —T U T’ and by Lemma 1 3U’€& such
that y€e U’ and TNU' = .
By the comparability of §,

SmU'=<Dg

T U,
SAT =0 " D

However, x € T and TNU'=® so that x€ T'— U’ and yeU — T,
Thus T’ gSU’, a contradiction, and hence TUT' = X,
We prove next that the sets E in 8 form a partition of 8.

LEMMA 3. The comparability relation “S” on S is an equivalence
3 'y ) q

relation, and the equivalence classes are precisely the maximal linearly
ordered E's.

Proof. It is clear that “% ” is reflexive and symmetric. We show
that S§T and TSU = SSU.

(i) SCT, TCU=SCU and SDOT, TDOU = SDU.
(i) Let SCT, TDOU. Since X €8 3x€ X —T and by Lemma 1
IT" €8 such that x €T’ and TNT = .
By the comparability of 8,

T'"nS =0
o=

T'NU =
(iii) Let SOT, TCU and suppose SS3T. Choose x€S—U and

y€U—S. Apply Lemma 1 to obtain U’,S’€ 8 such that
z€U', yeS', UNU'=® =SNS".

SSU.

By comparability of §,

TS =)
! _'[)'/.
TAU =0~ > >

However, x€ U'—S’ and y€S'—U’, a contradiction; hence SET.
¥ -
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Furthermore, since each equivalence class is linearly ordered by inclu-
sion and consists of all members of § which are equivalent under the rela-
tion “S”, it is maximal and hence the set of equivalence classes is precisely

the set & of all maximal linearly ordered subsets of §.

LEMMA 4. For each E €6 there exists a unique E'€ & which satisfies
VSeE 3IS'€ E' suckh that SNS' = O.
Furthermore (E’)'= E and hence the equivalence classes are paired off.
Progf. Consider E¥ = {S'€8|3S€E such that SN S' = ®}. Let
Si, S, € E*; then there exist S;,Se€ E such that SSNS;|=® =SNS5} .
Now $15S:, suppose SiCSq.
By the comparability of &,
SiNSi=® )
SiNSh=®
Hence E*CE’ for some E’€é and in fact E* = E’;
Let T'e€eE’. Then 3S5'€ E* such that T'DS'.
Since X ¢8 Jx ¢T' and by Lemma 1 3T €8 such that

x€T and TNT'=0.

Since S’e E¥ 3Se€ E such that SNS' = .
By comparability,

=515S).

SNS' =0
TNS =\
Since E is an equivalence class, T € E and by definition of E*, T'¢e E*
so that also E'CE*. Thus E* = E’.
It is clear that E’ is constructed in a unique way.
Let SeE and choose x€ X —S. By Lemma 1 35S €8 such that
SNS'= ® and since E = E* is unique, S'€ E'.
Finally, (E) = {T€8|3S'€E’ such that TNS = ®}.
Now there exist S€ E, S'€ E’ such that SNS'= ® and hence S € (E')".
However, the equivalence classes are disjoint so that E = (E')".

LemMMA 5. VSeE VS'€eE, SNS'=® or SUS = X.

Progf. Let SEE, S'€E’ and suppose SNS'=s=® and SUS'= X.
Choose x€SNS’ and ye X—SUS'. By Lemma 1 and the uniqueness
of E'3T' € E' such that x €T’ and SNT'= ®. Since T,S' € E/, T'SS".
However, x € S'— T’ and y€T'—S’, a contradiction. Hence result.

=>S%T.

LEMMA 6. Each E €8 has the following order properties:
(i) E has no < largest’,;
(i) E hkas no ¢ smallest’;
(iii) VSo,S1€ E with So$Si the followig statements are true:
(a) 3S,€E' such that SoNSy= O and S1USh= X;
(b) ITo€E such that So§To§ Si;
(©) So§intS.
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Progf. (i) Let SEE. By Lemma 1 and the uniqueness of E’3S’' € E’
such that SNS'= ®. By Lemma 2 and uniqueness of E 3T € E such that
ST, and hence E has no largest.

(iiy Follows by condition (5) since the existence of a smallest member
would contradict NE = @.

(iii) Let So,S1€E with Sp$S; and choose x€S;—Sp.

By Lemma 1 35; €8 such that x€S; and SoNS; = ®. Clearly Sj € E’
and since x€S;NS; it follows by Lemma 5 that SjUS; = X. Also
X —S§ <SSt

By Lemma 2 3To€8 such that TonSj=® and Sp § To.

Hence Sp$ToCX —S)$St and clearly also Ty € E.

Since X —S; is open it follows that Sp$ int S;.

Since & is countable the number of equivalence classes is also countable.
Let {E,, E}}sea be an enumeration of the pairs of equivalence classes.
We will prove that X can be embedded homeomorphically in II{R, | %€ A}.
Before proving this result we need two more Lemmas.

LEMMA 7. Let E denote an arbitrary E, in the above enumeration of the
pairs of equivalence classes. Then there exists a continuous map f: X —>R
with the property that E = { {7 (— oo, r}|r € Q} where Q denotes the set of
rational numbers.

Proof. Let {r,},.y be a listing of the rational numbers with < r,

and let {S } . be a listing of the members of E with $;CS;.
Throughout the proof of Lemma 7, “ACB?” shall mean “A$B”.
We rearrange the S;’s in a family {S, } . such that

74,7 €Q, 7,<7,=S5,CintS, .

By induction we define S, , #» = 3 as follows:

@) If r,<7 VA<mn, put p,=min {7 |x<n} and let S, be the
first in the enumeration of E = {S,};cx such that S, CS, (Lemma 6 (ii)).
(i) If »,>7, Vk<n, put ¢, =max{r;|x<n} and let S, be the

first in the enumeration {S;};cn such that S,,2S,, (Lemma 6 (i)).
(iii) If neither (i) nor (ii) applies then take the largest »; and smallest

7; with 7,7<# and which satisfy »,<7,<7;. Let S, be the first in the
enumeration {S;} .. such that S, CS, C S,; (Lemma 6 (iii)).

Define f:X —R by f(x) =inf{r,|x€S,}.

Since each x € X belongs to some S, but not to all of them, the func-
tion f is well defined (c.f. condition (5)).

We show that /~'(—oo,7,] and f1[7,,00) are closed in X for r,€Q.



[120]  JoHAN SWART, 4n axiomatic topological characterization of Hilbert space 171

(a) f—l (—oo,7] = Sr,,:
x€S, =f(x)=inf{r,|x€S, }<r,=>xef(—o0,r,].
Also  x€f 7l (—oo,r,]=>f(x) <7, =>x€S, V7, >7,.

(If x5S, for some 7, >7,, then 7 is a lower bound greater than »,—a con-
tradiction since the infimum =< 7,).

Suppose x €S, .

By Lemma 1 and uniqueness of E’ 3S5'€¢ E’ such that x€ S’ and
S, NS = .

By Lemma 2 and uniqueness of E 3T € E such that TNS'= ® and
S, CT.

Since TNS'=®, x €T which gives a contradiction since T =S, for
some 7, >7,. Thus x€S, and hence S, = f1(—o0,7,].

(b) f@) zr,e>xeX—intS, W, <r,:
f@) =7, = inf{r,|x€S, } =7,
= xGS,m Y7, <7,

= x €intS, V7, <7,.

Also r€X—int§, V7, <7,
= x €intS, vr,, <7,

= x €S, Vr,<7,.

(If x€S,, for some 7, < 7,, then we can choose 7, € Q such that », < », <7,

and hence x € int S, —this gives a contradiction since 7, < 7, and hence
S,, CintS,))

=>fx)=7,.

Thus f7'[r,,o0) = N{(X — int S,,) | 7w<7,} which is closed.
Hence f is continuous since all sets of the form (— oo,7,] and [7,,o0)
with 7, €Q form a closed subbase for R.

COROLLARIES (i) f:X — R is a surjection.
(i) Zf E={f"(—o0,7,]|7r,€Q} then the following
Statements. arve irue:
(a) Grven any a€ R 3S'€ E' such that f~'[a,c0)CS';
(b) Eack S'€E' is of the form f~'[m,o0), some mé€R;
(o) If a,b€R with a<<b then Ac€R such that a <c<b and
S [e,00)€E".

Proofs. (i) f:X—>R is a surjection since X is connected and since for
any 7, €Q 3r,y€ X such that f(x) = 7, and /()< »,. Thus f(X) cannot
be an interval, which is bounded below or above and hence f(X) = R.
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(i) (a) Let »,€Q with 7,<a and let S=/f"(—oc0,r,]€E. Let
r,<7,<a for 7,€Q and let S =f"1(—o0,7,]€E.
By Lemma 6 35S'€ E’ such that SNS'= ® and S;US'= X.
Hence S'Df (7, ,00)Df[a, o).

(b) Let S'e€e E'.  There exists S€ E such that S'NS = ©.

Let S=/f"1(—o0,7].

Suppose Ja,b€R with » <a<é and such that f'{a}CS' and
FBYG S |

Choose 70€Q, a<7y<é and let Sy=f1(—oo0,r]€E.

Since  SeNS’'== @ it follows by Lemma 5 that So U S' = X.

However, f71{é} ¢ SoUS".

Thus if f{a}CS and if 6>a then f1{5}CS

Let m =inf{f(x)|x€S'} and let m =f (%), x,€X.

We show that S'=f"[m, co).

Suppose x, €S’. By Lemma 1 and uniqueness of E 3S; € E such that
%€S1 and 51N S =0.

Clearly S;= f'(— o0, %] for some £ = m.

By Lemma 2 and uniqueness of E 3T € E such that TNS = ® and
SI§T.

Thus T = f"'(—o0,g] where m < £.<g and since TNS = ,
g<f(x) VxeS.

However, m < ¢ contradicts the fact that s is the greatest lower bound
of the set {f(x)|x€S'}.

Thus xy€S’ and hence S'=f"1[m, co).

(© Let p,9€Q with a<<p<g<é and let So=f1(—o0,p] €FE,
and S;=f"l(—o0,g]€E.
By Lemma 6 (iii) 3S'€ E’ such that SoNS'= ® and S;US" = X.
Thus S'Df7'(g,00) and hence S'=f"!¢,00) for p<c <gq.

LEMMA 8. For any two different, non-paired equivalence classes Eq and Es
the following holds:

VSie Ey VSse Eq S10 Se # (O3

Proof. We have Ei==E; and Ex==E;.

Let S;€E; and Se€8 be such that ;NS = ®. By the uniqueness
of Ei, S€E; and since E{==E;, E{NE;= ® and hence S ¢ E;. Hence
result.

Proof of the Theorem. Let {E,, E,},cs be an enumeration of the pairs
of equivalence classes. For each #€A we define in accordance, with
Lemma 7, a continuous surjection f,: X — R.

The diagonal map

A= A f,:X > I{R,|neA}
2= (fu(@))nea



[131]  JoHAN SWART, 4n axiomatic topological characterization of Hilbert space 173

gives the required homeomorphism:
(i) A is continuous since each £, is continuous and p,0A = f,,.
(if) A is injective:
Let x,yeX with x==y.
Since X is T1, N{S|x€Sed} = {x} and hence there exists Sp €3
such that x €Sy and y €¢Sp. ;
Suppose So€ E,. By Lemma 1 and uniqueness of E, 3S;€ E, such
that y€Sy and SeN Sy = D.
Now Sp=f"1(—o00,a], a€Q, so that f,(x) < a.
Since SoNSy =@, f,(¥)>a and hence f,(x)==1,(¥).
Thus A (x) 5= A ().
If Soe€E, a similar proof, using Corollary (ii)(b), holds.

(iii) A is a surjection:
Let (a,)nea€ Il {R,|n€A}. Consider

T = | U ASER, |/ (00,41 CS} V| U {SCEL| /i a,,09C8 )
n€ A nCA

Clearly §NE==® and E¢J VEe€s.

Furthermore in view of Lemma 8, & is linked and thus by condition (6)
Let xeNn§. We show that A(x) = (a,),eca, ie. f,(x) =a, VneA.
Suppose not, i.e. suppose Iz €A such that f,(x)==a,.

(a) Suppose a,<f,(x) and choose g€Q such that a,<g<Ff,(x).
By Lemma 7, S =/, "(—oo,¢]€E, and since fil(—o0,a,]CS it
follows that Se€ .
However, x Ef[l (— o0, ¢], a contradiction.

(b) Suppose a, >f, (x).
By Lemma 7, Corollary (ii)(c) there exists S'=f, '[4, oo)€ E, for
some 6€ R satisfying a,> 6> f,(x).
Since f, ' [a,,o0)CS S'€F.
However, =x ¢ f,,"1 [6,00), a contradiction.
Thus f,(x)=a, VneA.

(iv) A7l is continuous:

We keep in mind that A is a bijection and prove that A(S) is closed
in II{R,|7€A} for all Ses.

Now VS€8 3meA such that S=f,"'(—o0,7] or S=Ff""[a, o)
for some 7»€Q or some a€R.

Suppose S :fn_l(— oo ,7]. We prove that A(S) = p,;'(— oo, 7]:

Let y € A(S), then y = A(x) for some x€S and since f,(x) <7,
2,0A(x) < 7 so that y € p, ' (— o0, 7].
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Let z€p,'(—oo,r]. Now 3xe X such that Alx)=2 If xe¢S=
=f ' (—oo,7] then Ju(x) >7, ie. p,(2) >r, a contradiction.

Thus x€S and hence z=A(x)€eA(S).

Hence A(S) = p,' (— oo, 7].

If S=f,"[a,c0) then it follows in a similar way that AS)=p, ' [a,o0).

The proof of the Theorem is now complete.

Remark. 1f there are a countable infinite number of equivalence classes,
X = R® and hence in view of Anderson’s result ([1] and [2]), X /.

If a specific characterization of Hilbert space is sought one could require
the additional condition:

(7 [{E}| is not finite.
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