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Geometria differenziale. — Geodesic Congruences in a Finsler
Space. Nota di S. C. SrivasTava e R.S. StnHA, presentata @ dal
Socio E. Bomprani.

RIASSUNTO. — In questa Nota vengono considerate le congruenze geodetiche di uno
spazio di Finsler.

1. INTRODUCTION

In Riemannian space congruences and orthogonal ennuples were inve-
stigated and developed in detail by Levy, Ricci, Weatherburn, Eishenhart
and others [4] ®. In the present paper we wish to study some properties
of geodesic congruences.

In order to explain the notations and to clarify the concepts used below
some basic formulae of the theory of Finsler spaces arc briefly presented
here.

Let us consider a Finsler space F, of #-dimensions referred to a coordi-
nate system x* (henceforth all Latin indices run from 1 to %), whose metric
function F (a7, #%) satisfi s th> coaditioas usually impose 1 upon such functions
([1], ch. I). The metric tensor of F, is defined by

£y, ) == 85, F(x, ) @,
and since F (4%, #) is positively homogeneous of degree one in #, the
tensor C,, (x, %) = —; 3, &;; (x, %) satisfies the identities
(r.1) Copp(, D) # =Cy(x, ) 7 =Cy(x, )2 =0
(1.2) Ch,# —o

where vertical bar denotes differentiation in the Cartan’s sense. On multi-
plying (1.1) and (1.2) by F, and noting that A, = FC,, we have

(1:3) Ay £ = e X = Ayt =o
Jr 7
(1.4) Al # — o,
(*) Nella seduta del 13 novembre 1971.

(1) The numbers in the square brackets refer to the References given at the end.
(2) 3 = 3faxt, & = 334,
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The connection coefficients of L. Berwald ([1], ch. III) are denoted by
Gy and are used to define a covariant derivative of a covariant tensor
T, (x, %) of degree 2 is given by

Tyw=29T;—9,T,;3,G —T,,G;—T, Gj

‘ . o .k

The connection coefficent Gj; is homogeneous of degree zero in 2. As we
know that the covariant derivative of &;; in Berwald’s sense is not zero, it
is given by

(1.5) &iwy = — 2D 7.

The geodesics in Finsler spaces

(1.6) CIES G( ‘ij";j)zo

are autoparallel curves; that is,

dx’ [ da’
(1:7) ds < df)(ﬁ_

2. GEODESIC CURVATURE

DEFINITION 2.1. Let C:x' = x'(s) be a curve and f(lif be the com-

poments of the unit tangent vector to C, then the vector whose components P are
given by

cdef dxt [y
(2.1) ]7 T Tds (ds )(1»)

is called the geodesic curvature vector of C.
If we suppose

(2.2) P = k,oul
where 7, is a unit vector, then k, is called the geodesic curvature of C.

THEOREM 2.1.  The unit vector nl, is normal to the curve C.

P .
Proof. Since —(-(—1? 1s a unit tangent vector we have

dx” dx
(2'3> gl] dS dJ‘ =1

Taking covariant derivative we get

(2.9) BN A (4) &,
4 8w ds ds 285 @ ds
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)3
Multiplying (2.4) by %’E- and by equations (2.1), (2.2) and (1.5) we have

p odit di dit
ds ds ds-

;dr’
ko £ij g~ =— 2Ryl

Equation (1.4) reduces it to the form
;do
kggz:l' n; __dT _ 0
which proves the Theorem. The unit vector 7, is called the geodesic
normal to C.

THEOREM 2.2. A geodesic in a ¥, is a curve whose geodesic curvature rela-
tive to ¥, vanishes at every point.

Proof. The proof at once follows from (1.7), (2.1) and (2.2) i.e. £, = o.

THEOREM 2.3. Any vector which undergoes a parallel displacement along
a geodesic is inclined at a constant angle to the curve.

Proof. Let A be a vector field and C:a” = x*(s5) be the geodesic whose
differential equation is given by (1.6). If the vector A undergoes a parallel
displacement along the curve C, then we have

da’ i
(2:5) & M =o.

Differentiating covariantly we have
;A ; da’ e
(Cos Oy =gy X' ~3- + &5 Moy g + &5 ¥ (-—d;>(k)'
&
Multiplying by -c—]&y-g-— and by equations (1.5), (1.7) and (2.5) we can get

d
d}‘ COS 0 = 0.

Or
Cos 6 = constant.

Hence the Theorem.

3. Riccr’'s COEFFICIENT OF ROTATION

Let P(#*) be an arbitrary point of F,. Relative to a direction through P
we construct orthonormal #—ennuple ¢ (A, B,C = 1--.%), where A,B,C
will not stand for contravariant or covariant index;

(3.1) g;(x, ) e} ef =39,,.
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These orthonormal unit vectors satisfy the identity
(3-2) g*(x, 2) = ef e}

where the repeated index stands for summation. From (3.2) we can deduce

(3-3) Ejx = €aj s

If ¢ is the inverse of ¢/ then we also have
(3.4 @) ey e =19
(3.4 ) el e? =3B,

Now we define the quantities v, by the relation [3]

(3-5) Yanc = & Chw %h G

which can be considered as the generalisation of Ricci’s coefficient of rotation
in the Finsler space with respect to Berwald’s connection.
Differentiating (3.1) and multiplying with ¢! we get
Pk —
i e, e} e g, A(k) ef, e, l—gzj A Chaéc=O-

From (1.5) and (3.5) it becomes
(3.6) Yapc T Yeac = 2 Azmh Z ey e el
In particular, if ¢f coincides with the direction of 4 then (3.6) reduces to
(3.7 Yapc = O
Multiplying (3.5) by ¢¢ we have from (3.4 )
(3-8) Yanc €5 = p; ezi(l)'
Further we can also deduce with the help of (3.42) and (1.5) by multi-
plying (3.5) by g* e? and ej‘? respectively that
(3.9) Yapc €7 = €6 g
and

B — , (R’
Yanc 4 = €CCaju T ZAWMZ €y o

4. GEODESIC CONGRUENCE
A congruence is said to be geodesic if all its curves are geodesics.
We now have the following Theorem.

THEOREM 4.1. The necessary and sufficient condition that the curves of a
congruence, whose unit tangents ¢\ are geodesics, are given by the equations

(4.1) Yapc=0 , A=C.
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Proof. 1f #, is the geodesic curvature and 7, is the geodesic normal to
the curve of the congruence whose unit tangent is e’ then

&, "l = ériy eh (A not summed).

From (3.9) we have
(4.2) k, "y — Yagpa e (A not summed).

From Theorem (2.2) £, = o if the curve of the congruence is geodesic.
Now we have

Yaps €2 =0 (A not summed)

for arbitrary ¢®. Hence

Yaga = O (A not summed)

is the necessary condition.

Conversely, if v,,, =0 (A not summed), then from (4.2) k, = o0 le.
the condition is sufficient also.

Hence the Theorem.

If we define the tendency of the vector A at a point in the direction
of the unit vector u at the same point by the expression

g 17 y‘j “’k )\1(1’)
then we have the following Theorems:

THEOREM 4.2. The divergence of a vector \ in a F, is the sum of the
tendencies of W for n—mutually orthogonal directions in F,.

Proof. 1f e} are the unit tangents to the curves of an orthogonal ennuple,
then the tendency of A in the direction of el is
&y eh Eh W (A not summed).
Therefore the sum of the tendencies in #-mutually orthogonal direction ey
is given by
o
& en en Ky
From (3.2) we have
L - .
Syenealy =8, 8" Ny =Ny
which is the divergence of A.

THEOREM 4.3. A congruence ¢ of an orthogonal ennuple be a geodesic
congruence if the tendencies of all the other congruences of the ennuple in the

direction of &\ is given by

(4.3) Ypan = 2 A, "ol el et

ik h A "B
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Proof. From (3.5)

o , .
Yeaa = &5 R %A Ca (A not summed)

which is the tendency of ¢ in the direction of el .
From (3.6) we have

(4-4) Yapa T Ypaa = 2 Aij/bj/; 7 ey e e -

From Theorem (4.1) the condition for C to be a geodesic congruence is
Yaps = O, hence (4.4) becomes
h i g gk
Tpaa = 2 Az’jl:\/z e ef el
Hence the Theorem.
When ¢ coincides with the direction of #¢ then the right hand side
of (4.3) vanishes so we have the following corollary.

COROLLARY 4.1. A congruence e of an orthogonal ennuple is a geodesic
congruence if the tendencies of i' in the direction of et vanish identically.

In case we define Ricci’s coefficient of rotation by the help of Cartan’s
covariant derivative then the results obtained are the same as in the Rie-
mannian space.
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