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Geometria differenziale. —  Geodesic Congruences in a Finsler 
Space. N ota di S. C. S r i v a s t a v a  e R. S. S in h a , presentata (*> dal 
Socio E. B o m p ia n i.

R iassunto . — In questa N ota vengono considerate le congruenze geodetiche di uno 
spazio di Finsler.

i. Introduction

In  R iem annian space congruences and orthogonal ennuples were inve
stigated and developed in detail by Levy, Ricci, W eatherburn, E ishenhart 
and others [4] (R In the present paper we wish to study some properties 
of geodesic congruences.

In order to explain the notations and to clarify the concepts used below 
some basic form ulae of the theory of Finsler spaces are briefly presented 
here.

Let us consider a Finsler space Fn of ^-dim ensions referred to a coordi
nate system x* (henceforth all L atin  indices run from 1 to n), whose metric 
function F (x \ x'1') sa tis f is  the conditions usually imposed upon such functions 
( [ I ], ch. I). The m etric tensor of F^ is defined by

Sij (oc , x) =  n  a. 3, F2 (x , x) (2);

and since F (x’, x ‘) is positively homogeneous of degree one in x ', the 

tensor Cijk (x , x) =  A  dk g tJ (x , x) satisfies the identities

( 1 • I ) Cijk (x , x) C  =  C;jk (.r  , x) x } =  C,yi (x , x ) x k =  o

(i-2) C% r x  =  o

where vertical bar denotes differentiation in the C artan ’s sense. On m ulti
plying (1.1) and (1.2) by F, and noting th a t K,jk =  FC,^ we have

9  -.3) S ljk F  =  A ijk xJ =  K ijk #  =  o

(14) A g  — o .

(*) Nella seduta del 13 novembre 1971.
(1) The numbers in the square brackets refer to the References given at the end.
(2) di -  d/dx\ di =  djdxc
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The connection coefficients of L. Berwald ([ i] , ch. I l l )  are denoted by 
G}k and are used to define a covariant derivative of a covariant tensor 
T  -j (x  , x) of degree 2 is given by

TW) -  a, —  i  T fy 9, Gr — T ry Grik — T ,r Grjk .

The connection coefficent G\k is homogeneous of degree zero in x \  As we 
know tha t the covariant derivative of g {J in B erw ald’s sense is not zero, it 
is given by

( ̂  * 5) S i j { k )  := 2 K i j k \h I  -

The geodesics in Finsler spaces

( 1.6 ) cR2 +  2 G ! V , d xJ \ 
dy /

are autoparallel curves; tha t is,

(i-7) d x 3 I d x 4
d.y \ d*y /(/) — O.

2. Geodesic Curvature

D e f in it io n  2.1. L et G : x ' =  x' (s) be a curve and be the com-d.y
ponents o f the u n it tangent vector to C, then the vector whose components p i are 
given by

(2.1) i def d xk /  dC  \
^  d j \ ds }(k)

is called the geodesic curvature vector o f C. 
If  we suppose

(2.2) p l — kg ng

where ng is a unit vector, then kg is called the geodesic curvature of C.

THEOREM 2.1. The u n it vector ng is norm al to the curve C. 

dxProof. Since is a unit tangent vector we have

(2-3) d x 1 d xJ __
gij v r  ”d7  ”  1

T aking co variant derivative we get

dx* d xJ /
gij(k) v u  +  2£ij \ds

dx1 \  d x3 
ds J(k) ds O .( 2 4 )
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dx'M ultiplying (2.4) by -y— and by equations (2.1), (2.2) and (1.5) we have

d*’
kg gij ^g  ̂-k̂ ijk/h

Equation (1.4) reduces it to the form

jh dx1 dx3 dxk 
d s dj* ds

dx
s ij r*g ~~ds~K i n — O

which proves the Theorem . The unit vector ng is called the geodesic 
norm al to C.

T heorem  2.2. A geodesic in a is a curve whose geodesic curvature rela
tive to vanishes at every point.

Proof. T he proof at once follows from (1.7), (2.1) and (2.2) i.e. kg =  o.

THEOREM 2 .3 . A n y  vector which undergoes a parallel displacement along 
a geodesic is inclined at a constant angle to the curve.

Proof. Let X be a vector field and C : x* =  x* (s) be the geodesic whose 
differential equation is given by (1.6). If  the vector X undergoes a parallel 
displacem ent along the curve C, then we have

( - 5) ^ V )  =  o .

If  0 is the angle between X and the tangent vector to C then

Cos 0 =  g (j  A* y y  •

D ifferentiating covariantly  we have

(Cos 0)œ — gij(k) x‘ -L -  + g iJ>{t) y y  + gij ( y y

df*
M ultiplying by and by equations (1.5), (1.7) and (2.5)

A  Cos 0 =  0 .

I(k)

we can get

Or

Ffence the Theorem .
Cos 0 — constant.

3. R icci’s Coefficient of Rotation

L et P (V) be an arb itra ry  point of Fn. Relative to a direction through P 
we construct orthonorm al ^-ennup le ^  (A , B , C =  1 • • -n), where A  , B , C 
will not stand for contravarian t or covariant index;

(3-0 i » ( * > * ) eA eÌ =  SAB
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These orthonorm al unit vectors satisfy the identity  

(3.2) £=<*(*,*) =  **

where the repeated index stands for sum m ation. From  (3.2) we can deduce 

(3-3) gjk =  eAA  j  Ak  *

If  ef  is the inverse of ef  then we also have

e\ e^ =  8*A  j  j(3 4  <0

(3 4 <*)

Now we define the quantities YABc ky t îe rela ti°n [3]

( 3  • s )  T a B C  =  & ij  eA  (k) e B 4

which can be considered as the generalisation of Ricci’s coefficient of rotation 
in the Finsler space w ith respect to Berw ald’s connection.

D ifferentiating (3.1) and m ultiplying with ef we get

•VM eL en +  g c\ tjik) A  B  C  1 *  ti A ’"B ec 4  gii eA eB (ij  "A{k) " B " C  1 & ij  " A  ° B (k) eC O.

2  ^ i j k  \h I  eA  e B eG *

From  (1.5) and (3.5) it becomes

( 3 - 6 )  Y a b c  4  Y b a c

In  particular, if ef  coincides with the direction of £* then (3.6) reduces to

(3-7) Y(ab)c =  °-

M ultiplying (3.5) by ef we have from (3.4 a)

( 3 - 8 )  Y a b c  e ?  =  e Bi eA  ( / )  •

F urther we can also deduce w ith the help of (.3.4 <2) and (1.5) by m ulti
plying (3.5) by g hl ef and ej  respectively tha t

(3-9) 

and

C  &A  j(k)  1 ^  xijk I h ‘

V pBh —— pk ph 
i A B C  e  e C  öA{k)

Yabc ej  4  “h 2  ̂ e>,A "C  *

4. Geodesic Congruence

A congruence is said to be geodesic if all its curves are geodesics.
W e now have the following Theorem .

T heorem  4.1. The necessary and sufficient condition that the curves of a 
congruence, whose unit tangents ef are geodesics, are given by the equations

(4-1) Yabc ~  0  » A =  C .
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Proof. If kg is the geodesie curvature and ng is the geodesie norm al to 
the curve of the congruence whose unit tangent is ef then

~  eA(j) £ja (A not summed).

From  (3.9) we have

(4*2) kg ng =  Yaba (A not summed).

From  Theorem  (2.2) kg =  o if the curve of the congruence is geodesic. 
Now we have

Yaba ~  0 (A not summed)

for a rb itra ry  eBi. Hence

Yaba “  0 (A not summed)

is the necessary condition.
Conversely, if YABA =  0 (A  not summed), then from (4.2) kg =  o i.e. 

the condition is sufficient also.
Hence the Theorem .
If  we define the tendency of the vector X at a point in the direction 

of the unit vector pi at the same point by the expression

_  j  k -.i 
S i j  F  F  \ k )

then we have the following Theorems:

T h e o r e m  4.2. The divergence o f a vector X in  a Fn is the sum o f the 
tendencies o f X fo r  n—m utually orthogonal directions in  Fn .

Proof. If  e*A are the unit tangents to the curves of an orthogonal ennuple, 
then the tendency of X in the direction of e*K is

i i j  £a ekA X(£) (A not sum m ed).

Therefore the sum of the tendencies in ^ -m utually  orthogonal direction e'K 
is given by

_  i  k 
S i j  &A &A \ k )  •

From  (3.2) we have
xi- 1 k 7 „ ^Jk -.7' . ;

S i j  ë A &A l'(k) ' § i j  £  l^{k) ~  l- ( j )

which is the divergence of X.

THEOREM 4.3. A congruence elK o f an orthogonal ennuple be a geodesic 
congruence i f  the tendencies o f a ll the other congruences o f the ennuple in  the 
direction o f elA is given by

YbAA =  2 4 #  I A ^ eA e B e>A ■(4 -3)
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Proof. From  (3.5)

(A not summed)

which is the tendency of e^ in the direction of e*A . 
From  (3.6) we have

(4 4 ) YaBA +  ÏBAA 2 ^ ijk 'h  I  ^A eB ekA '

From  Theorem  (4-0  the condition for C to be a geodesic congruence is 
Tab\ ~  °> hence (4.4) becomes

Hence the Theorem.
W hen elB coincides with the direction of &  then the right hand side 

° f  (4*3) vanishes so we have the following corollary.

COROLLARY 4.1. A  congruence e'K o f an orthogonal ennuple is a geodesic 
congruence i f  the tendencies o f T*' in the direction o f elK vanish identically.

In  case we define Ricci’s coefficient of rotation by the help of C artan ’s 
covariant derivative then the results obtained are the same as in the Rie- 
m annian space.
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