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Teoria dei numeri. — On the asymptotic distribution of values 
of arithmetical functions. N ota di Jân o s  G alam bos, presentata (#) 
dal Socio B. S e g re .

RIASSUNTO. — In questa N ota si studia la distribuzione asintotica di funzioni arit­
metiche non necessariam ente additive o moltiplicative.

Introduction

We say tha t the arithm etical function f { n )  has a limit distribution 
F (x) if, for all continuity points of F (x),

( 0

Putting

lim
N |=>+oo

I

"n 2
« < N

f(n)<x
I =  F  ( x ) .

(2) F n W  =  - L  E  I ,1N «<N 
f(n)<x

(1) can be rew ritten as lim F N (x) =  F (x) as N |=> +  00. One frequently 
used technique to find conditions on f i n )  for (1) to hold is to tu rn  to the 
Fourier transform s of F N (x) and F (x). The power of the Fourier transform s 
lies in the continuity theorem  which enables one to replace the relation (1) 
by the limit of the corresponding Fourier transform s. M ore precisely,
setting

(3) U d*) =  T  2 b ,v/w1N n = 1

and
+ 00 /»

(4) 9 (t) =  I eitx dF(^) ,
—00

we have (see Loéve [9], p. 191) the following

C o n tin u ity  Theorem. I f  (i) holds, then cpN if) ->9 it). Conversely, i f  
lim 9n (f) exists, as N |=> +  00, and is continuous at t =  o, then (1) holds, 
and lim  9N if) =  9 if) , N -> +  00.

In the past decade, m uch attention was paid to the distribution problem 
of f  in) for the special case when f  (ri) is additive; i.e., when, for iu  , v) =  1, 

f ( u v ) , = f ( u ) A - f i y ) .  The special characteristic of this class of arithm etical

(*) Nella seduta del 12 febbraio 1972.
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functions is th a t they  behave as sums of (asymptotically) independent random  
variables. Some results can therefore be obtained by purely probabilistic 
argum ents (see Galambos [5]), but at least most results can be guessed 
from sim ilar theorem s of probability  theory  and then by a unified m ethod 
they can actually be proved (see Kubilius [8]). The m ethod of power series, 
which can be labelled as D elange’s m ethod (see e.g. Delange [2]), is also 
very powerful in this field.

The class of m ultiplicative functions g  (n), i.e., such that, for (u , v) =  1, 
g  (uv) — g  (u) g  (v), is strongly related to the additive ones, since there is 
a one to one correspondence between the additive and positive m ultiplicative 
functions by the relation exp ( / (^)) = g ( n ) .  Hence the distribution problem  
of m ultiplicative functions is more general and, in certain sense, more 
difficult than  th a t of additive functions. General solutions for these were 
obtained only recently by Bakstys [1] and Galambos [6].

For arithm etical functions, when neither additivity  nor m ultiplicativity 
is assumed, very little is known. A  general Theorem  in this direction was 
independently obtained in Novoselov [10] and Galambos [4]. In the 
present paper we shall extend this result and give some examples which in 
themselves are of interest. In  a series of papers, further extensions will be 
given. In  addition to the C ontinuity  Theorem, properties of Dirichlet series 
will be m ade use of.

The result

W e introduce the following notation. Let f i n )  be an arb itra ry  arith ­
m etical function. Then

, x JtfO)
(5) F / ( * .o  =  S - — -

n = l  71

There are well known m ethods to express cpN it) of (3) in term s of Fy (s , t), 
though we shall use them  in an indirect way. O ur m ain result is the 
following

THEOREM. Let  f i n )  be an arbitrary arithmetical function  and let g  in) 
be such that its asymptotic distribution exists. Assum e that Ff  is , t)\Y g (s , t) — 
=  H ( s , t) can be expanded into a D irichlet series which is absolutely convergent 
at s =  I. Then , i f  H ( , t) as a function  o f t  is continuous at t =  o, the asym p­
totic distribution o f f i n )  also exists. The Fourier transform o f the asymptotic 
distribution o f f i n )  is H (1 , t) times the Fourier transform o f the lim it 
distribution o f g  (fi).

The proof is based on the C ontinuity Theorem  and on the following 
Lem m a, which, in several specific forms, has been applied by m any authors 
and which seems to be due to W intner. A detailed proof is given in 
Rényi [11].
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Lemma. Let us assume that

(6)

converge and that

(7)

'Then

Proof o f the Theorem . Let

We then apply the Lem m a with the following choices:

an =  eü-f(n̂  , bn — h (n , t) and cn — eü g(& .

By the assum ption on g  (ri) and by the continuity Theorem , the sequence 
in (6) converges and the limit is a characteristic function, therefore it is 
continuous at any /, hence at t =  o. The convergence of the series in (6) 
and the validity of (7) follow from our conditions and thus the conclusion 
of the Lem m a yields th a t cpN (f)y defined in (3), has a limit as N !=> -f  00, 
and th a t the limit is H (1 yt) times the limit of the sequence of (6). Since 
both factors are continuous at t — o, the second part of the Continuity Theorem  
term inates the proof.

T hough the proof is an easy combination of the Continuity Theorem  
and the Lem m a, the following example, contained in a Corollary, shows 
its significance.

Let Bi , B2 , • • •, be a sequence of positive integers and assum e that, 
if U  (ni) denotes the num ber of distinct prim e factors of m,

Suppose th a t no By contains squarefree part (i.e. all prime divisors of By 
are at least of the second degree), and let A i , A2 , •• •, be the sequence of 
those positive integers which can be written in the form  ByQ with some 7 
and where Q is a squarefree num ber. By our assumption, for any m, the 
representation A m — By Q is unique. Let us define the arithm etical function 

f  (ri) âs

(8) U(By) < r  yj  =  I , 2 , • • •, r  fixed,

and th a t

(9)

v ( D  +  g  (Q) if f° r some m yn == A m =  By Q
otherwise,



[87] JÂ.NOS G AL AM BOS, On the asymptotic distribution o f  values, ecc. 12 9

where v (a) is an a rb itra ry  arithm etical function and g  {a) is strongly additive 
(i.e. additive and for oc >  1 , g ( p a) =  g  (p) for any prim e num ber p).  We 
shall show, as a corollary to our Theorem, th a t if g  (n) has an asym ptotic 
distribution so does f  (n), independently  of the function v (a). But since 

f  (n) is not additive, this exam ple shows th a t not so m uch the additiv ity  as 
the asym ptotic behaviour of the Dirichlet series (s , t), or equivalently, 
F / (.? ,/), is the determ ining factor in the existence of the asym ptotic law 
for either g  or f .  Note th a t f  (n) differs from g i n )  on a large set A i , A2 ,• • • 
(which has positive asym ptotic density).

COROLLARY. L et f  (n) be defined by (10). Assum e that each o f the series

<"> 2  A 1 ■ 2  A 1 • 2  j\f(p)  I d  *  \ f (p) 1 <  1 $  i / g ) ! > i ^

converges where p  runs over the prim e numbers. Then the lim it distribution  
of f  in) exists.

Proof. Note tha t for any prim e p  , f ( p )  =  g  (p)- ( u )  thus reduces to
the Erdös [3] Theorem  on g  in) which yields tha t the asym ptotic distribution 
° f  g in )  exists. In order to apply  our Theorem , we therefore have to evaluate
the ratio F y  (s , t ) / F g ( s  , f ) . By definition

F f ( s , t )  =
+00
y g.V[KB,.)+^(Q)] V  eits(n) _

m = l A* “ rm n y i  nS' m

X 1 X 1 Ie J ■__f i s ^ f ^  f is{Q)

j = 1 Q B S.Q S +  h i

where Q is squarefree and A m =  By Q is the unique representation in the 
definition of A m. We therefore have

By g  (fi) being strongly additive,

=  r i ( i

Thus, since

/ . f i s  IP) \ ! l
( a — 1/ (1 +

itg{p)

+  L  (s ’ / )-

ps— I

f s ■—• I

f i s iP )
=  I p s  (p s  __  I j I +

f i s iP )  \ - l
ps--  j

our assum ptions (8) and (9) on the sequence By im ply tha t Ff (s , t) j¥g {s , t) 
is absolutely and uniform ly convergent at j  =  1 and it is therefore continuous 
in t. The conclusion of our Theorem  thus establishes the Corollary.

A few refiiarks are in order. Note th a t no assum ption is m ade on the 
function v (a) in the Corollary, which m eans that the function /  (n) is even 
not determ ined by the term s occuring in (11), which guarantees the exist­
ence of its asym ptotic distribution. The choices of g  (n) =  o and v (a) =  1
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are of special interest, when f  (Am) =  1 for all m  and zero for other values 
of the argum ent. Since now f  (p) =  g  (J>) =  o for all primes, (11) is satisfi­
ed; thus, in view of (1) and (2), the Corollary implies, as a special case, th a t 
the sequence A m has positive density in the set of successive integers. This 
explains our earlier claim th a t /  in) is not additive on a ‘ large ’ set. This 
same fact raises an interesting question. Is there any arithm etical function 

f  in) which is not additive on a set of density one and at the same time 
(11) guarantees the existence of its asym ptotic distribution? There is, of 
course, a trivial solution to this question, namely, if f i n )  =  g  (n) +  2, say, 
if n  is not a prim e num ber and /  (p) =  g  (J>) for all primes, where g  (n) is 
a strongly additive function. The question would be interesting even if we 
replace “ density ” by “ upper density ” .

Examples

Let the sequence Bi , B2 be defined as the set of those positive
integers which have the canonical representation p*1 p • • • p*k with1 2  k
a it > 2 ,  t  =  i , 2 , -  • -}k, and for which (aq— i)-f(a* 2— i) +  - - - + ( a ^ — 1 ) = r ,  
a given num ber. (8) is evidently satisfied, and since

+00

Sj =1
< p* + s p 3 H------ <  ,

so is (9). The Corollary is therefore applicable, which provides a great freedom 
to m odify a strongly additive function g(n )  on the set A mi the set of those 
integers for which the difference between the num bers of all prim e divisors 
and the distinct prim e divisors is a fixed num ber r, and yet (11) guarantees 
the existence of the asym ptotic distribution. It is well known th a t the set A m 
has positive density (see Galambos [5] for several references), which fact 
is reobtained in the Corollary by a special choice of f ( n ) ,  as described in 
the previous section.

The Corollary itself actually gives a wide class of examples, hence we 
tu rn  to additional applications of the Theorem. F irst of all, let us point out 
that, choosing g in )  — o for all n, F ^ ,  t) reduces to R iem ann’s zeta function; 
thus our Theorem  does extend the result of Galambos [4] and the correspond­
ing theorem  in Novoselov [10]. W ithout going into details, we wish to indicate 
two classes of examples.

One is to em phasize th a t the Theorem  can be applied to sequences of 
arithm etical functions if, for one of the sequences, the asym ptotic distribu­
tion is known. Let, for example, g ( n )  =  (U(n) —  log log N)/(loglog N)1/2, 
where, as before, U  (n) is the num ber of distinct prim e divisors of n. Then, 
with f i n )  satisfying the conditions in the Theorem, a limit distribution for 
( /  —  En)/Dn with suitable sequences E N and Dn of real num ber can be
obtained. As a m atter of fact, for g in )  specified above it is known th a t its
Fourier transform  corresponding to (3) tends to exp as N |=> +  00.
Several ‘no rm alized ’ arithm etical functions can be ‘com pared ’ by  our result.
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The final class of examples is ra ther a rem ark. K âtai and M ogyorodi [7] 
introduced the following class of arithm etical functions. Let n  be represented 
as a product of a complete square and a squarefree num ber, n  =  SQ, say. 
It is im m ediately seen th a t this representation is unique. T hey  consider 
those arithm etical functions which are functions of S only (in m y reform ula­
tion here, S and Q are not relatively prime, but evidently equivalent to 
their definition). Several of their neat results can be reobtained from our 
Theorem  by considering first a specific form of their functions, we take it 
as g  (n), and then extend the result through our Theorem  to a more general 
form f i n ) .
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