ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GEORGE BACHMAN, EDWARD BECKENSTEIN, LAWRENCE NARICI

Function Algebras over Valued Fields and Measures. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.2, p. 120–125. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_2_120_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Algebra topologica. — Function Algebras over Valued Fields and Measures. Nota II di George Bachman, Edward Beckenstein e Lawrence Narici, presentata ^(*) dal Corrisp. G. ZAPPA.

RIASSUNTO. — Si studia l'algebra topologica F(T) delle funzioni continue che applicano uno spazio O-dimensionale T in un campo valutato non archimedeo completo, munito della topologia compatto-aperta.

3. ZERO-ONE MEASURES

In this section T is a O-dimensional Hausdorff space. Prior to Definition 3, F may be any field whose characteristic is O; in Lemma 1 and all subsequent results F is a nonarchimedean nontrivially valued field of characteristic O to which $\sqrt{-1}$ does not belong. (See Sec. 4).

DEFINITION I. A zero-one measure is a map μ of the clopen sets δ of T into $\{O, I\} \subset F$ such that: (a) for any two disjoint clopen sets U and V, $\mu(U \cup V) = \mu(U) + \mu(V)$; (b) $\mu(T) = I$.

Clearly if μ is a zero-one measure, μ is a bounded measure and $\mathfrak{D}_{\mu} = \{ U \in \mathfrak{S} \mid \mu(U) = o \}$. Thus $F_{\mu} = C (\cup \mathfrak{D}_{\mu}) = \bigcap \{ U \in \mathfrak{S} \mid \mu(U) = I \}$. Moreover, if μ is a zero-one measure, F_{μ} is compact as we now prove. To this end, suppose that F_{μ} is nonempty, (U_s) is a clopen cover of F_{μ} , and $F_{\mu} \cap U_t \neq \emptyset$ for some index t. If $s \neq t$ then $F_{\mu} \cap (U_s - U_t) = \emptyset$: otherwise $\mu(U_s - U_t) = \mu(U_t) = I$ and $\mu((U_s - U_t) \cup U_t) = 2$. Thus it follows that $F_{\mu} \subset U_t$, so F_{μ} is compact.

Actually much more is true of F_{μ} for zero-one measures. The above argument shows that if (U_s) is a clopen cover of F_{μ} , then F_{μ} must be wholly contained in any U_s which it meets. Since T is Hausdorff it follows that if F_{μ} is not empty, then it must be a singleton. This proves:

PROPOSITION 6. If μ is a zero-one measure, then its support F_{μ} is empty or is a singleton.

DEFINITION 2. A zero-one measure μ is concentrated at a point t if there is some $t \in T$ such that $\mu(U) = I$ if and only if $t \in U$.

As an immediate consequence of Proposition 6 we have:

PROPOSITION 7. A zero-one measure μ is concentrated at a point if and only if F_{μ} is not empty.

DEFINITION 3. Let F be a valued field so that we can consider the algebra F(T) of *continuous* functions mapping T into F. For $H \subset F(T)$, $Z(H) = \bigcup_{f \in H} f^{-1}(O)$. A *z-filter* on T is a nonempty subfamily \mathcal{F} of Z(F(T))

(*) Nella seduta dell'11 dicembre 1971.

which does not have \emptyset as a member, is closed with respect to the formation of finite intersections, and is such that if $S \in \mathfrak{F}$ is contained in $S' \in Z$ (F(T)), then $S' \in \mathfrak{F}$. A *z*-ultrafilter is a *z*-filter which is not properly contained in any other *z*-filter.

In what follows F is a nonarchimedean nontrivially valued field of characteristic O which does not contain $\sqrt{-1}$ (such as, for example, the p-adic number fields Q_p for p = 4n+3, $n = 1, 2, \cdots$; cf. [1, p. 59]), F(T) carries the compact-open topology and M denotes a maximal ideal in F(T).

LEMMA I. If M is a maximal ideal in F(T), then Z(M) is a z-ultrafilter.

Proof. If $\emptyset \in \mathbb{Z}(M)$ there would be an $f \in M$ such that $f^{-1} \in M$; hence $\emptyset \notin \mathbb{Z}(M)$. If S, $W \in \mathbb{Z}(M)$ then $S = f^{-1}(O)$ and $W = g^{-1}(O)$ for some $f, g \in M$. Since $\sqrt{-1} \notin F$, $S \cap W = \mathbb{Z}(f) \cap \mathbb{Z}(g) = \mathbb{Z}(f^2 + g^2)$; thus $S \cap W \in \mathbb{Z}(M)$. Suppose now that $S = f^{-1}(O) \in \mathbb{Z}(M)$ and $S \subset W =$ $= g^{-1}(O) \in \mathbb{Z}(F(T))$. Letting h = fg, then $W = h^{-1}(O) \in \mathbb{Z}(M)$.

To show that Z(M) is a *z*-ultrafilter, let $S \in Z(F(T))$ and suppose that $S \notin Z(M)$; thus $S = f^{-1}(O)$ where $f \notin M$. Consequently the ideal generated by M and f is F(T) so there must be functions $g \in F(T)$ and $h \in M$ such that fg + h = I. Thus $\emptyset = Z(fg + h) \supset Z(f) \cap Z(h) = S \cap Z(h)$. Hence there can be no *z*-filter to which S belongs that contains Z(M). Hence Z(M) is a *z*-ultrafilter.

THEOREM 4. Associated with each maximal ideal M in F(T) is a zeroone measure μ . The measure μ is concentrated at a point if and only if M is the kernel of an evaluation map \hat{t} where $\hat{t}(f) = f(t)$ for all $f \in F(T)$. In this case $F_{\mu} = \{t\}$.

Proof. We let $U \in S$ and set $\mu(U) = I$ if $U \supset S$ for some $S \in Z(M)$. Otherwise $\mu(U) = 0$. Equivalently, as $U \in Z(F(T))$, $\mu(U) = I$ if and only if $U \in Z(M)$.

We show that μ satisfies condition (a) of Definition I. Let $W \in S$ and suppose $U \cap W = \emptyset$. Clearly both U and W cannot belong to Z(M). If $U \in Z(M)$ and $W \notin Z(M)$, then clearly $\mu(U \cup W) = \mu(U) + \mu(W) = I$. As Z(M) is a *z*-ultrafilter and $U \cup W \in Z(F(T))$, then if both U and W do not belong to Z(M), $U \cup W$ also does not belong to Z(M). Thus $\mu(U \cup W) = \mu(U) + \mu(W) = o$.

Since $F_{\mu} = \bigcap_{\mu(U)=1} U = \bigcap_{U \in Z(M)} U$ and T is O-dimensional and Hausdorff, then $F_{\mu} = \bigcap_{f \in M} Z(f)$. Thus $F_{\mu} = \{t\}$ if and only if all functions in M vanish at t. Thus M is the kernel of the evaluation map \hat{t} .

DEFINITION 4. T is an F - Q space if and only if the zero-one measures generated by the kernels of nontrivial homomorphisms of F(T) into F are concentrated at points. (See Sec. 4).

Note that what is being asked of T in Definition 4 is that the homomorphisms of F(T) into F be the evaluation maps \hat{t} for all $t \in T$. THEOREM 5. Let T be a Lindelöf space. Then T is an F-Q space.

Proof. Let J be a nontrivial homomorphism of F(T) into F and suppose that F_{μ_J} is empty where μ_J is the zero-one measure associated (Theorem 4) with the kernel of J. Then there exists a family (W_j) of pairwise disjoint clopen sets such that $T = \bigcup_{i=1}^{\infty} W_i$ where each $\mu_J(W_i) = 0$. Define a function

$$f = \sum_{i=1}^{\infty} \pi^i \, k_{\mathrm{W}_i}$$

where $|\pi| < i$. The function $f \in F(T)$ and therefore for some $\lambda \in F$, $f - \lambda e \in M$ where M is the kernel of J. Thus $f - \lambda e$ cannot be invertible in F(T) and therefore for some $t \in T$, $(f - \lambda e)(t) = 0$. Then clearly $\lambda = \pi^{i}$ for some i and $(f - \lambda e)^{-1} \{O\} = W_{i}$. Hence $\mu_{J}(W_{i}) \neq 0$ and we have arrived at a contradiction.

By a Theorem of Van Rooij [12, p. 27,29] it follows that T is homeomorphic to a closed subspace of a product of the field F.

In [3] we proved an analog of a Theorem of S. Warner [15, p. 268] in the nonarchimedean setting. The statement of this Theorem is as follows:

Let the set of nontrivial continuous homomorphisms on the Fréchet full algebra X over a local field F be denoted by \mathfrak{M} . Let \mathfrak{M} carry the weak-* (Gelfand) topology and $F(\mathfrak{M})$ the compact-open topology. Then X is topologically isomorphic to $F(\mathfrak{M})$.

We observe that if F is a local field without $\sqrt{-1}$, then the algebra X of the above-quoted Theorem is seen to be a functionally continuous algebra after it is observed that \mathfrak{M} is a Lindelöf space and the preceeding Theorem is applied.

Example 1. If T is an uncountable set of nonmeasurable cardinal carrying the discrete topology and F is discretely valued, then T is an F - Q space, but clearly not a Lindelöf space.

Example 2. We let F be a local field (once again of characteristic O and not containing $\sqrt{-1}$). We choose our space T as the field itself and take the topology on T to be induced by the valuation. Then T is a Lindelöf space. Thus the homomorphisms of F(T) are the points of T by Theorem 5.

We let $A_n = \{t \mid |t| > n\}$ $(n \ge 1)$ and $I = \{f \mid f(A_n) = \{0\}$ for some $n\}$. I is an ideal in F(T) and by Zorn's lemma can be extended to a maximal ideal. Of course I is the ideal of functions with compact support in F(T). Since the sets A_n are clopen in T, the functions k_{CA_n} are in I. Since each $t \in T$ belongs to CA_n for some n and k_{CA_n} is equal to I at t, M cannot be the kernel of a homomorphism of F(T) into F. Then associated with M is a zero-one measure μ with empty support.

If we take μ_0 to be the zero-one measure concentrated at t = 0 (associated with the evaluation map $\hat{t} = \hat{0}$) we see that $\hat{\mu} = \mu + \mu_0$ is a bounded

measure with compact support having the following properties

(a) $F_{\hat{u}} = \{o\};$

- (b) $\hat{\mu}$ restricted to $F_{\hat{\mu}}$ is not well-defined;
- (c) $\hat{\mu}$ does not satisfy condition [M] of [13, p. 190];
- (d) The linear functional h defined by;

$$h\left(\sum_{i=1}^{n} \alpha_{i} k_{\mathbf{W}_{i}}\right) = \sum_{i=1}^{n} \alpha_{i} \hat{\mu} (\mathbf{W}_{i})$$

on $X = [k_W | W \in S]$ is not continuous.

Proof. To show (b) is true we observe that $CA_n \cap F_{\hat{\mu}} = F_{\hat{\mu}}$ and $T \cap F_{\hat{\mu}} = F_{\hat{\mu}}$. However $\hat{\mu}(CA_n) = 1$ while $\hat{\mu}(T) = 2$.

To prove (c) simply note that $\bigcap_{n=1}^{\infty} A_n = \emptyset$ but $\hat{\mu}(A_n) = I$ and does not converge to O.

The remaining statements have already been proved in previous discussions and the example is finished.

We consider a final application of zero-one measures. In this discussion we assume that F is a discretely valued field (of characteristic O). We do not insist that $\sqrt[\gamma]{-1}$ not be present in F. In [3] it is shown through use of the theory of nonarchimedean locally multiplicatively convex topological algebras that when F satisfies the conditions imposed above, the continuous homomorphisms of F(T) into F (again F(T) carries the compact-open topology) are the evaluation maps on the points of T. We now prove this statement using zero-one measures.

Let h be a continuous homomorphism and μ_{k} the measure associated with h by the results of Sec. 2 of this paper. Then letting μ_{k}^{*} be the restriction of μ_{k} to $F_{\mu_{k}}$ we see that μ_{k}^{*} is a zero-one measure.

Thus $F_{\mu_k} = \{t\}$ for some $t \in T$ and from the results of Sec. 2

$$h(f) = \int_{\{t\}} f \,\mathrm{d}\mu_h^* = f(t).$$

We close the paper by noting that in a subsequent paper further characterizations of F - Q spaces analogous to those characterizations that exist for the classical notion [14, pp. 206, 207] will be considered. The purpose of developing these characterizations will be multi-fold. One is to produce examples of spaces which are not F - Q spaces. Another is to develop an analog of a result of Nachbin and Shirota [9, 11] which would characterize F-bornological function algebras. A third is to consider further structural properties of function algebras whose analysis is considerably helped in the classical setting by these characterizations. Other topologies such as the point-open topology on F(T) will also be investigated.

4. Addendum

It can be shown that if T is a O-dimensional Hausdorff space and F is any complete nonarchimedean nontrivially valued field, then a bounded continuous function taking a compact subset of T into F can be extended to a bounded continuous function taking T into F. As a result of this, all statements in Sec. 2 of this paper, in which the field is assumed to be discretely valued, are true for any complete nonarchimedean nontrivially valued field F.

Consequently we may prove that "F(T) is F-barreled if and only if for every subset E of T which is closed but not compact there is a function $f \in F(T)$ which is unbounded on E" assuming F to be any spherically complete field. This is again the unpublished result obtained by R. L. Ellis. However, by the methods of this paper, the support set of a continuous linear functional on F(T) is shown to be unique.

We also Note that in *Function Algebras over Valued Fields and Measures III* (to appear) we have shown that the collection Z(F(T)) of subsets of T is closed with respect to the operation of taking finite intersections as well as proved the result of Lemma 1 of Sec. 3 for any complete nonarchimedean nontrivially valued field F. Hence in all results of Sec. 3, " $\sqrt{-1} \notin F$ " may be removed. Of particular interest is the consequence that a Fréchet full algebra over any local field is functionally continuous.

Subsequent investigation has shown that the notion of "F - Q space" is independent of the field in the following sense: If T is an F - Q space for some complete discretely valued field F whose residue class field has nonmeasurable cardinal, then T is an F - Q space for all such fields F. This will appear in a subsequent paper.

References

- [I] G. BACHMAN, Introduction to *p*-adic numbers and valuation theory, Academic Press, New York, 1964.
- [2] E. BECKENSTEIN, G. BACHMAN and L. NARICI, Spectral continuity and permanent sets in topological algebras, «Atti Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. », 50 (3), 277-283 (1971).
- [3] E. BECKENSTEIN, G. BACHMAN and L. NARICI, Function algebras over valued fields, « Pac. J. Math.», (to appear).
- [4] L. DUGUNDJI, Topology, Allyn and Bacon, Boston 1966.
- [5] R. L. ELLIS, A nonarchimedean analog of the Tietze-extension Theorem, «Indag. Math. », 29, 332-333 (1967).
- [6] L. GILLMAN and M. JERISON, *Rings of Continuous functions*, van Nostrand, Princeton, N. J., 1960.
- [7] J. L. KELLEY, General Topology, van Nostrand, Princeton, N.J., 1955.
- [8] A. F. MONNA and T. A. SPRINGER, Intégration Non-Archimédienne I-II, « Indag. Math. », 25, 634-653 (1963).

[82]

- [9] L. NACHBIN, Topological vector spaces of continuous functions, « Proc. Nat. Acad. Sci. (U.S.A.) », 40. 471-474 (1954).
- [10] L. NARICI, E. BECKENSTEIN and G. BACHMAN, Functional Analysis and Valuation Theory, Marcel Dekker Inc., New York, 1971.
- [11] T. SHIROTA, On locally convex spaces of continuous functions, «Proc. Japan Acad. », 30, 294–298 (1954).
- [12] A. C. M. VAN ROOIJ, Non-archimedean uniformities, «Kyung pook Math. J. », 10 (1), 21-30, July 1970.
- [13] A. C. M. VAN ROOIJ and W. H. SCHIKHOF, Non-archimedean integration theory, «Indag. Math. », 31, 190–199 (1969).
- [14] S. WARNER, Inductive limits of normed algebras, «Trans. Amer. Math. Soc. », 190–216 (1956).
- [15] S. WARNER, The topology of compact convergence on continuous function spaces, «Duke Math. J.», 25, 265–282 (1958).