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Algebra topologica. —- Function Algebras over Valued Fields and 
Measures. N ota II di G e o r g e  B a c h m a n , E dw ard  B e c k e n s t e in  e 
L a w r e n c e  N a r ic i , presentata (*} dal Corrisp. G. Z a p p a ,

Riassunto. — Si studia l’algebra topologica F(T) delle funzioni continue che appli
cano uno spazio O -dim ensionale T  in un campo valutato non archimedeo completo, munito 
della topologia com patto -aperta .

3. Zero -one measures

In  this section T  is a O -dim ensional H ausdorff space. Prior to Definition 3, 
F m ay be any  field whose characteristic is O ; in Lem m a 1 and all sub
sequent results F  is a nonarchim edean nontrivially valued field of charac
teristic O to which ]/—  I does not belong. (See Sec. 4).

D e f in i t i o n  i. A zero-one measure is a m ap p, of the clopen sets § of T 
into {O , 1} C F  such that: (a) for any  two disjoint clopen sets U  and V, 
g ( U u V )  =  g ( U )  +  g (V ); (b) p, (T) =  I.

Clearly if p. is a zero-one m easure, p. is a bounded m easure and 
%  =  {U c 8 I p. (U) =  o } . T hus F^ =  C =  n  {U e § | p, (U) =  1}.
M oreover, if p, is a zero-one m easure, F^ is com pact as we now prove. To 
this end, suppose th a t F^ is nonem pty, (U,) is a clopen cover of F ^ , and 
^ 0 ^ 4=0  for some index t. I f  s =j= t  then F^ n  (U s — U,) =  0 :  o ther
wise p. (U , —  U,) =  p. ( \ j t) — I and p, ((Us —  U ,) U U,) — 2. T hus it follows 
th a t F^ C U ; , so F^ is com pact.

A ctually  m uch m ore is true  of F^ for zero-one m easures. T he above 
argum ent shows th a t if (U,) is a clopen cover of F^, then F^ m ust be wholly 
contained in any  XJS which it meets. Since T  is H ausdorff it follows th a t if 
F^ is not em pty, then it m ust be a singleton. This proves:

P ro p o s i t io n  6. I f  p, is a zero-one measure, then its support F^ is 
em pty or is a singleton.

D e f in i t i o n  2. A  zero-one m easure p. is concentrated at a po in t t  if there 
is some t e  T  such th a t p. (U) =  1 if and only if t e  U .

As an im m ediate consequence of Proposition 6 we have:

PROPOSITION J. A  zero-one measure p, is concentrated at a po in t i f  and  
only i f  F^ is not empty.

D e f in i t i o n  3. L et F be a valued field so th a t we can consider the 
algebra F  (T) of continuous functions m apping T  into F. For H C F (T), 
Z (H) =  U / _1(0 ). A  z-filter  on T  is a nonem pty subfam ily êf of Z (F (T))

(*) Nella seduta dell’l l  dicembre 1971.
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which does not have 0 as a m em ber, is closed w ith respect to the form ation 
of finite intersections, and is such th a t if S e cF is contained in S ' e Z  (F  (T)), 
then S' € oL A z—ultrafilter is a ^-filter which is not properly contained in 
any other ^-filter.

In  w hat follows F is a nonarchim edean nontrivially valued field of 
characteristic O which does not contain f — i (such as, for example, the 
/>-adic num ber fields Qp for p  =  4 n f  3, n =  1,2,  • • - ; cf. [1, p. 59]), F(T) 
carries the com pact-open topology and M denotes a m axim al ideal in F(T).

Lemma i. I f  M is a m ax im a l ideal in  F(T), then Z (M ) is a z-ultrafilter.

Proof. If  0 e Z (M) there would be an f  e M such th a t f ~ x e M; 
hence 0 6 Z (M). If  S , W  e Z (M) then S =  f  (O) and W  =  g ~ x (O) for 
some f , g e  M. Since ] /= T  6 F, S n W  =  Z ( / ) n Z ( ^ ) - Z ( / 2 + ^ 2); 
thus S n  W  e Z (M). Suppose now th a t S =  f ^ 1 (O) € Z (M) and S C W  =  
— S 1 (P) e Z ( F  (T)). L etting  h =  f g , then W  =  h~x (O) e Z (M).

To show th a t Z (M) is a ^-ultrafilter, let S e Z (F (T)) and suppose tha t 
S € Z (M); thus S =  f " 1 (O) where /  € M. C onsequently the ideal generated 
by M and f  is F (T) so there m ust be functions g  e F (T) and h 6 M such 
th a t f g  +  h =  i. T hus 0 =  Z ( fg  +  h ) D Z  ( f ) n Z ( A )  =  S n Z  (A). Hence 
there can be no ^-filter to which S belongs th a t contains Z (M). Hence 
Z (M) is a «s'-ultrafilter.

T h eo rem  4. Associated w ith each m axim a l ideal M in  F (T) is a zero- 
one measure (x. The measure [i is concentrated at a po in t i f  and only i f  
M is the kernel o f an evaluation m ap t where t ( / )  =  f ( t )  fo r  a ll f e  F (T ). 
In  this case F^ =  {t } .

Proof. W e let U e S  and set [x (U) = 1  if U  D S for some S e Z ( M ) .  
O therwise (i, (U) =  o. E quivalently , as U e Z ( F  (T)) , (x (U) =  1 if and 
only if U e Z ( M ) .

W e show th a t [x satisfies condition (a) of Definition 1. Let W e S  and 
suppose U f i  W  =  0 .  C learly both U and W  cannot belong to Z (M). I f  
U  e Z (M) and W  € Z (M), then clearly jx (U U W) = >  (U) +  jx (W) =  1. 
As Z (M ) is a ^ -u ltrafilter and U  u W e  Z (F (T )), then if both U  and W  
do not belong to Z (M) , U ( j W  also does not belong to Z (M). Thus 
fA (U U  W) =  [x (U) +  n(W ) =  O.

Since F^ =  n  U  =  O U  and T  is O -dim ensional and Hausdorff,
{x(U) =  l  UGZ(M)

then F =  n  Z ( / ) .  T hus F = { /}  if and only if all functions in M vanish
■ / e  m

at t. T hus M is the kernel of the evaluation m ap t .

D e f in i t i o n  4. T  is an F — Q space if and only if the zero-one 
m easures generated by the kernels of nontrivial hom om orphism s of F  (T) 
into F  are concentrated at points. (See Sec. 4).

N ote th a t w hat is being asked of T  in Definition 4 is th a t the hom o
m orphism s of F(T) into F be the evaluation m aps t for all t e  T .
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T h eo rem  5. L et T  be a L indelö f space. Then T  is an F  —  Q space.

Proof. L et J be a nontriv ial hom om orphism  of F (T ) into F and
suppose th a t F ^  is em pty where [i-j is the zero-one m easure associated
(Theorem  4) with the kernel of J. Then there exists a fam ily (Wy) of

00
pairwise disjoint dopen  sets such th a t T  =  U W ; where each (Aj (W,-) =  o. 

Define a function
OO

/  =  ^  tJ kw
i  =  1

where \n \ <  i . T he function /  6 F  (T) and therefore for some X e F, 
f  ■ 6 M where M is the kernel of J. T hus f  ■— \e  cannot be invertible
in F (T ) and therefore for some l e  T ,  ( / — ~Ke)(t) =  o. Then clearly 
X =  71:“ for some i  and ( / — X«)-1 {O} =  W ,. Hence ^  (W,-) =j= o and we 
have arrived a t a contradiction.

By a Theorem  of V an Rooij [12, p. 27,29] it follows th a t T  is homeo- 
m orphic to a closed subspace of a product of the field F.

In  [3] we proved an analog of a Theorem  of S. W arner [15, p. 268] 
in the nonarchim edean setting. The statem ent of this Theorem  is as follows: 

L et the set of nontrivial continuous hom om orphism s on the Fréchet 
full algebra X over a local field F be denoted by 9ÎL L et 911 carry  the 
w eak-* (Gelfand) topology and F  (911) the com pact-open topology. T hen X 
is topologically isom orphic to F  (911).

W e observe th a t if F  is a local field w ithout ]/— 1, then the algebra X 
of the above-quoted Theorem  is seen to be a functionally  continuous algebra 
after it is observed th a t 91t  is a L indelöf space and the preceeding Theorem  
is applied.

E xam ple I.  I f  T  is an uncountable set of nonm easurable cardinal 
carrying the discrete topology and F  is discretely valued, then T  is an 
F  —  Q space, but clearly not a Lindelöf space.

E xam ple 2. W e let F be a local field (once again of characteristic O and 
not containing ]/—  1). W e choose our space T  as the field itself and take the 
topology on T  to be induced by the valuation. T hen T  is a L indelöf space. 
Thus the hom om orphism s of F  (T) are the points of T  by Theorem  5.

W e let A n =  { l  \ \ I\ >  n }  (n >  1) and I =  { / 1 /  (A„) = { 0 }  for some n}. 
I is an ideal in F(T) and by Z orn’s lem m a can be extended to a m axim al ideal. 
O f course I is the ideal of functions w ith com pact support in F  (T). Since the 
sets A n are d o p en  in T, the functions kCAn are in I. Since each t  e T  belongs 
to CA„ for some n and kCAn is equal to 1 at t , M cannot be the kernel of 
a horfiomorphism of F  (T) into F. Then associated w ith M is a zero-one 
m easure p, w ith em pty  support.

I f  we take p0 to be the zero-one m easure concentrated at t =  o (associ
ated w ith the evaluation m ap t  — 6) we see th a t ;1 =  p -j- ix0 is a bounded
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m easure w ith com pact support having the following properties

(«) f 5 =  {o >;
(b) p restricted to F- is not well-defined;
(c) p does not satisfy condition [M] of [13, p. 190];
(d ) The linear functional h  defined by;

h (  Ì ]  a,- Î  «,• |1 (W,)
v = i  1 i=l

on X =  [kw I W e S ]  is not continuous.

Proof. T o show (b) is true we observe th a t CA„ n  F- =  F- and T  n  F~ =  F - .
^  '  '  n ' \L \L 1 [X [L

However p (CA„) =  1 while p (T) =  2.
00

To prove (c) sim ply note th a t n  A n =  0  but p (Aw) =  1 and does not
n =  l

converge to O.
The rem aining statem ents have already been proved in previous discuss

ions and the exam ple is finished.
W e consider a final application of zero-one m easures. In this discussion 

we assum e th a t F  is a discretely valued field (of characteristic O). We do not 
insist th a t ^— 1 not be present in F. In  [3] it is shown through use of the 
theory  of nonarchim edean locally m ultiplicatively convex topological algebras 
th a t when F satisfies the conditions imposed above, the continuous homo- 
m orphism s of F (T) into F (again F (T) carries the com pact-open topology) 
are the evaluation m aps on the points of T. W e now prove this statem ent 
using zero-one m easures.

Let h be a continuous hom om orphism  and p^ the m easure associated 
w ith h by the results of Sec. 2 of this paper. Then letting p* be the 
restriction of p^ to F ^  we see th a t p* is a zero-one m easure.

Thus Fh  =  { t}  for some IE  T  and from the results of Sec. 2

h ( f )  =  J  / d t f = / ( t ) .

W e close the paper by noting th a t in a subsequent paper further cha
racterizations of F  — Q spaces analagous to those characterizations th a t 
exist for the classical notion [14, pp. 206, 207] will be considered. T he 
purpose of developing these characterizations will be multi-fold. One is to 
produce exam ples of spaces which are not F — Q spaces. A nother is to 
develop an analog of a result of N achbin and Shirota [9, 11] which would 
characterize F-bornological function algebras. A th ird  is to consider further 
structu ral properties of function algebras whose analysis is considerably 
helped in the classical setting by these characterizations. O ther topologies 
such as the point-open topology on F (T) will also be investigated.
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4. A ddendum

It can be shown th a t if T  is a O -dim ensional H ausdorff space and F 
is any complete nonarchim edean nontrivially valued field, then a bounded 
continuous function taking a compact subset of T  into F can be extended 
to a bounded continuous function taking T into F. As a result of this, 
all statem ents in Sec. 2 of this paper, in which the field is assumed to be 
discretely valued, are true for any complete nonarchim edean nontrivially 
valued field F.

Consequently we m ay prove that “ F (T) is F -barreled  if and only if 
for every subset E of T  which is closed but not compact there is a function 

/  e F (T) which is unbounded on E ” assuming F to be any spherically 
complete field. This is again the unpublished result obtained by R. L. Ellis. 
However, by the m ethods of this paper, the support set of a continuous 
linear functional on F(T) is shown to be unique.

W e also Note that in Function Algebras over Valued Fields and Measures I I I  
(to appear) we have shown th a t the collection Z (F(T )) of subsets of T  is closed 
with respect to the operation of taking finite intersections as well as proved 
the result of Lem m a 1 of Sec. 3 for any complete nonarchim edean nontrivially 
valued field F. Hence in all results of Sec. 3, “ ]/— 1 € F  ” m ay be removed. 
Of particular interest is the consequence tha t a Fréchet full algebra over 
any local field is functionally continuous.

Subsequent investigation has shown tha t the notion of “ F — Q space ” 
is independent of the field in the following sense: If T  is an F —  Q space 
for some complete discretely valued field F whose residue class field has 
nonm easurable cardinal, then T  is an F — Q space for all such fields F. 
This will appear in a subsequent paper.
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