ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FRANCESCO PEGORARO

On the SO(3) x SO(3) symmetry in hydrodynamical
problems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 52 (1972), n.1, p. 73-79.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_1_73_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1972_8_52_1_73_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1972.



SEZIONE II

(Fisica, chimica, geologia, paleontologia e mineralogia)

Fisica teorica. — On the SO(3) xSO(3) symmetry in hydrody-
namical problems. Nota di Francesco PEGORARO, presentata @ dal
Corrisp. L. A. Rapicarr pr Brozoro.

RIASSUNTO. — Di alcuni problemi idrodinamici viene indicato un equivalente mecca-
nico. Di questo vengono riconosciute le proprieta di invarianza e ad esse ricollegato un Teo-
rema di Riemann. Si presenta inoltre una generalizzazione di questo Teorema.

I.

In this paper we examine the symmetry properties of closed, dissipation
free hydrodynamical systems which are thermodynamically characterized
by a relation between pressure and density.

The fact that the system is closed implies the constancy of the total angular
momentum and therefore invariance under the SO(3) group. From the vorti-
city one can construct another operator which, under suitable conditions,
forms with the angular momentum a basis of the SO(3)XSO(3) algebra.
The suitable conditions referred to are:

() the existence of a linear relation between the Euler and Lagrange
variables which is equivalent to the assumption that the position of a fluid
element at time # is a linear function of the position at time #,.

(#7) the validity of Dedekind’s duality principle.

Following Dyson [1] we will use the correspondence between the class
of hydrodynamical problems under consideration and a mechanical system.
To describe the latter and to show its SO(3) x SO(3) invariance we will find
it convenient to use a Lagrangian formulation. Another problem, already
considerad by Chandrasekhar [2], will be shown to possess the same symmetry.

We will' then show that Riemann’s Theorem [3] follows directly from
the conservation of the SO(3)XxXSO(3) generators.

Finally we will prove a generalization of this Theorem by considering
the consequences of the conservation of the generators under more general
assumptions than those of Riemann’s Theorem.

(*) Nella seduta del 15 gennaio 1972.
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II.

We will consider a hydrodynamical system, closed and dissipation free,
with a prescribed relation between pressure and density.

Let x = (x;,%5,x3) be the Euler coordinate of a fluid element and
a = (a;,ay,as) be its corresponding Lagrange coordinate.

We shall consider only solutions of the Euler equation that:

(z) are linear, i.e.
(1) x=F@)a
where F is a non singular 3X 3 matrix;

(¢7) satisfy Dedekind’s duality principle which states that if x is a
solution also x' = ‘F (¢) @ is a solution ®,

The matrix F can be canonically decomposed as
(2) F=TD'S

where T and S are orthogonal matrices and D is a diagonal one: D, which is
uniquely determined by F, gives the shape of the density distribution of the
fluid; T and S are defined modulo the intersection of the isotropy group of
D with the orthogonal group; 8 and T specify respectively the orientation
of the fluid with respect to the Lagrange and Euler coordinates.

(#7¢) We assume that D is positive definite.

Solutions satisfying (7) are called uniform motions; they are specified
by the dilation velocity D, the angular velocity & = T ‘T and the vorticity
§=282+ T ‘T, where {' =— DAD ! — D 1AD, with A =S8’S. All these
quantities depend only upon # but are independent of x.

,Uniform motions of a fluid are completely determined by the know-
ledge of F as a function of time: the hydrodynamical problem can thus be
reduced to a mechanical one with, in general, nine degrees of freedom.
Under suitable conditions the latter can be described by a Lagrangian
L =L (F,F).

Because of () L (F,’F) =L (F,F).

To analyze the symmetry of a system satisfying (7), (¢¢) and (272) we
begin by considering the special case discussed by Dyson [1] namely an iso-
thermal non-interacting gas whose density is constant on ellipsoidal surfaces

2 2 2\1/2
and is gaussian in the radial variable (—;—:—f-%—l—%z—) @, It may be
shown that the evolution of the corresponlding ;nechasnical system can be

(1) The superscript # denotes transposition.
(2) d; are the ellipsoid semiaxes.
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derived from the Lagrangian
(3) L(F,F)=_tr (FF)—U

where U, which is determined by the equation of state, depends upon det
F and corresponds to the internal energy density of the hydrodynamical

problem.
The canonical Poisson brackets are
{F,,Fu}=o0
@ {F;,Fu} =o
{F;,Ful = —38,8

where F,; and Fij are the matrix elements of F and F and are respectively
the coordinates and momenta of the mechanical system.

The Lagrangian (3) is invariant under SO(3)XSO(3) when its action
on F is defined by

() F—> 0, F0,

where O; and O, are orthogonal 3X 3 matrices. The corresponding action
on the Euler and Lagrange variables is

(6) x— 0 x a—+05a.

It then follows from N&ther’s Theorem that the two screw symmetrical
matrices

J=FF—FF
)

K = FF — ‘FF = — 'FF

are conserved. It is easy to see that J is proportional to the angular moment.

Using Eq. (4) one can readily prove that J and K satisfy the SO(3) X SO(3)
algebra.

From this example one sees that (7) and (77) are sufficient to guarantee
SO(3) XSO(3) .invariance. Indeed (7) ensures conservation of J. Under
F—F,J and. K are interchanged and therefore K is also conserved.

Another interesting case satisfying (7), (#7) and (2z) but different from
Dyson’s isi the one studied by Chandrasekhar [2], i.e. a homogeneous incom-
pressible finite fluid which interacts gravitationally with itself.

The equation of state and the boundary conditions are:

o) the density does not depend on x and #
B) the free surface is an ellipsoid;

v) the pressure vanishes at the surface and is given by:
\ v
p(x)=p, (1 — E,. xf/a’?) where p, is the pressure at the center of the fluid.
1

6*
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The fluid is equivalent to an eight-dimensional mechanical system (notice
that the volume is now fixed) and its evolution is derived from the Lagrangian

8 L(F,F)=—;—tr(l."tl:")—27tG tr DAD -+ ) tr log D

where A is a Lagrange multiplier arising from the condition det F = const;
A = A (D) is a diagonal matrix and G is the gravitational constant.

The kinetic term of the Lagrangian (8) is the same as in Dyson’s pro-
blem. The second term arises from the gravitational interaction and is a
function of D. It is immediately verified that the second and third term in
Eq. (8) are SO(3)xSO(3) invariant.

III.

As we have proved assumptions (7) and (zz) imply SO(3) X SO(3) inva-
riance of the hydrodynamical problem. This invariance leads to the two
equations:

0=J=T (—2DAD — 2DAD + 2DDL + 2 2DD + 2 2DAD +
— 2DADR + D* Q° — Q°D* + D’ 2 + QD* — 2 DAD)'T
©)
0=K=S8(—2D2D —2DLD + 2DDA + 2 ADD -+ 2 ADQD -+

— 2DRDA + D*A’> — A’D® + D’A + AD®* — 2 DZD)’S

where & = T'T and A =S'S.
Let us consider the case

D=2=A=o0.
From Eq. (9) we get

(10 0 = 2 2DAD — 2 DADL + D’ * — ©°D?
10
0 = 2 ADRD — 2 DDA - D*A? — A’D?

We want now to show the equivalence of these equations to Riemann’s
Theorem: if a hydrodynamical system satisfies (), (¢2) and (7¢) and 0 = D =
= Q= A& '=0 then either & is parallel to § and they both lie on a
principal axis, or it is not parallel to §’ and the plane they form is a principal
one.

Riemann’s Theorem is a necessary condition only as it does not involve
the interaction. ,

Chandrasekhar has given a proof of Riemann’s Theorem for the system
described in [2] using the nondiagonal elements of the second order virial.
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To prove the equivalence of equations (10) to Riemann’s Theorem let
us write them for the (2, 3)-component:

10 2d,dy Q Ay —2d,dy Qi Ay = (d5—d3) Q), Q
2d,dy Ay Qi —2d,dy Ay Q= (di—d3) Ay, A

Let us suppose that the components of £, Qi and Qi3 say, are different from

/ d; + 4 .
zero. Using the relation {;; = — —:;‘—Tkk— A;; we get after some algebraic
manipulations:

za’zdz c’m 2didy T,
24?&’3 d§ L Lo

(@} +dy (dy +df) D e

2didy Uy
d: + dz Qs

2 2d: d} e
ds + =d; + o
Solving (12) for C;3/Ql3 we get:

¢ & a: C/l3 22t d?)?
(13) (“>+<4d1—d2+d3> + ( >+“+ 3)

G A

If also Qa3 were different from zero, we would obtain with a similar pro-
cedure d; = dy = dj.

Hence, excludmg the trivial case, D proportional to the identity, only
two pairs (C;é, Q;z) can be different from zero: this is an equivalent formu-
lation of Riemann’s Theorem.

Using Eq. (9) we can discuss cases which are more general than the one
considered in Riemann’s Theorem. For example let us suppose that only

D vanishes. Equations (9) are a system of six equations for the fifteen quan-
tities 2,82, A A D.

We examine in particular the case where:
(14) ABO=FIA@] and L) =g[2)
and we restrict our attention to the special subcase when £ and A preceed
around a common axis, the third say. This means:
Q15 = const A5 = const
(15) Qi3 = Qqcos (w1 2) A= Agcos (w32 + )
Qz3 = QO sin (O.)]_ t) A23 = AO sin ((1)2 3 "l“ CP) QO , AO >0.
We shall prove that as a consequence of the SO(3)xSO(3) symmetry:

1) the precession velocities w; and w, are equal and the phase diffe-
rence ¢ is zero;
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2) the ellipsoid reduces to a spheroid with axial symmetry around
the precession axis;

3) the quantities &y d3 Q19 A3 Qp Ay = ’wl = Wy éatisfy Eq. (22).
To prove this let us consider the component of Eq. (9) on the rotation
axis (1, 2)
0 = 2 (dy d3 Qy Mg cos (w1 2) sin (g ¢ + @) — dy dg Qg Ag sin (0, 2)-
- cos (g £ + @) + (d5 — di) Qf cos (0 £) sin (0 2))
0 = 2 (dy d3 Qg Ay sin (w; 2) cos (0y ¢ + @) — d dg Qo Ag cos (0 £)-
- sin (wg 4 @) + (d5— d3) A§ cos (wg t 4 @) sin (s 2 + ¢)).

(16)

Since these equations must hold every # the coefficients of the terms
with different frequencies must vanish independently. The following cases
can occur:

(#) The two eigenvalues of D,d; and d,, are different. This implies
wW; = '_‘t Wy .

(@) If ©; = w; = o then
(17) Ozdzd3Q0A0 [Sin(zwl‘+CP)—I—Sin(P]"—dldsgvo‘
[sin (2 of + @) —sin @] + - (43— dT) Qf sin (2 02 + 2 )

which implies ¢ = o.
However from (17) and the second equation (16) we have Ag = Qo and
therefore

(18) 2dy = — (dy+ dy)
which is incompatible with the positive definite character of D.
(@) If ) =—wy; = with a similar procedure we get
(19) ¢=0 Ag=Qy , 2dy=d —d,
(#7) The two eigenvalues &; and &y are equal. This implies
0 =0=0.

As before ¢ =0 but 4;,ds, Qy, Ay remain arbitrary.
With a similar argument we can derive for the subcase (¢') from the

components of Eq. () on the plane orthogonal to the rotation axis the two
conditions:

Qip (@1 —3dg) + s+ d)o=o0
Qip (@y—3dg)+ (dz+dy) o =0.

(21)

It is easy to see that (21) and (19) lead to dy = — 3 which is absurd.
In this way we have proved that case (7) is excluded.
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With a similar technique we can show that case (¢7) leads to no contra-
diction provided that the variables satisfy the equations

0=2d; (ds Q13 Ng—dy Ayy Qo) + (d5—d3) Qg QO +
+ (@i + d3) 0Qy— 2 dy dy 0 A,
0= 2d; (ds Ayg Qo —dy Qi Ao) + (dg—d%) Agp Ag+-
+ (i +d) ohg—2d1ds0Qy  Q.ED.
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