Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

LaWrence Kuipers, Jau-shyong Shiue

A distribution property of a linear recurrence of the second order

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 52 (1972), n.1, p. 6-10.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1972_8_52_1_6_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Teoria dei numeri. - A distribution property of a linear recurrence of the second order. Nota di Lawrence Kuipers e Jau-shyong Shiue, presentata ${ }^{(*)}$ dal Socio B. Segre.

RiASSUNTO. - Si ottengono proprietà di distribuzione uniforme relative a successioni di interi definite da certe formule ricorrenti rispetto ad un modulo che sia potenza di un numero primo.

Let A, B, a and b be fixed rational integers, let A and B be different from zero and let the equation $z^{2}-A z-B=0$ have distinct nonzero roots. Let a and b be not both equal to zero. Consider the linear recurrence of the second order $\left(\mathrm{G}_{n}\right)$, defined by

$$
\begin{equation*}
\mathrm{G}_{0}=a \quad, \quad \mathrm{G}_{1}=b \quad, \quad \mathrm{G}_{n+1}=A \mathrm{G}_{n}-B \mathrm{G}_{n-1}, \quad n=\mathrm{I}, 2, \cdots \tag{I}
\end{equation*}
$$

In the present paper we establish a uniform distribution property of the above recurrence $\left(\mathrm{G}_{n}\right)$ with regard to a modulus m being equal to a power of a prime p under certain assumptions concerning the period $k\left(p^{h}\right)$ of $\left(\mathrm{G}_{n}\right)$ modulo m.

Definition of uniform distribution $\bmod m$. Let m be an integer ≥ 2 and let $\left(x_{n}\right), n=\mathrm{r}, 2, \cdots$ be a sequence of integers. Let j be any element of the set $\{0, \mathrm{I}, \cdots, m-\mathrm{I}\}$. Let N be an arbitrary positive integer. Let $A(N, j, m)$ denote the number of $\left(x_{n}\right), n=1,2, \cdots, N$, that are congruent to $j \bmod m$. The sequence $\left(x_{n}\right)$ is said to be uniformly distributed $\bmod m$ if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A(N, j, m) / N=\mathrm{I} / m \quad \text { for } \quad j=\mathrm{o}, \mathrm{I}, \cdots, m-\mathrm{I} \quad[\mathrm{I}] . \tag{2}
\end{equation*}
$$

Let p be a prime number and let $m=p^{h}(h=\mathrm{I}, 2, \cdots)$. Let $k=k\left(p^{h}\right)$ the least positive integer for which both congruences

$$
\mathrm{G}_{k} \equiv \mathrm{G}_{0}\left(\bmod p^{h}\right) \quad, \quad \mathrm{G}_{k+1} \equiv \mathrm{G}_{1}\left(\bmod p^{h}\right)
$$

are satisfied. The integer $k\left(p^{h}\right)$ is the least period of $\left(\mathrm{G}_{n}\right)$. That such periods exist and can be evaluated, if a, b, A and B are given, follows from the fundamental theorem on purely periodic sequences due to Morgan Ward [2].

We want to establish the following result.
ThEOREM. Let p be a prime and let (i) be a linear recurrence of the second order such that

$$
p>2, p /\left(A^{2}-4 B\right) \quad, \quad(A, p)=1 \quad, \quad(b A-2 a B, p)=\mathrm{r}
$$

[^0]It is assumed that $k\left(p^{h}\right)=(p-1) p^{h}$ is the smallest period of $\left(\mathrm{G}_{n}\right) \bmod p^{h}$, $h=1,2, \cdots$. Furthermore it is assumed that the congruence $2 B x \equiv A(\bmod p)$ is satisfied by a primitive root $\bmod p$. Then the sequence $\left(\mathrm{G}_{n}\right)$ is uniformly distributed $\bmod p^{h}$ for $h=1,2, \cdots$

Proof. We prove the theorem first for $h=1$. Upon reduction $\bmod p$ the terms of the reduced sequence $\left(\mathrm{G}_{n}\right)$ assume only values taken from the set $\{\mathrm{O}, \mathrm{I}, \cdots, p-\mathrm{I}\}$. There are p^{2} - I distinct pairs of two consecutive terms, since the occurrence of the pair o, o would imply $a=\mathrm{o}, b=\mathrm{o}$. The period in the case $h=\mathrm{I}$ according to the assumption is equal to ($p-\mathrm{I}$) p, so the period shows already $p^{2}-p$ distinct pairs of two consecutive terms. There is however a string of p-I elements, namely the residues $\bmod p$ of the integers

$$
\begin{equation*}
g^{p-1}, g^{p-2}, \cdots, g^{2}, g, \mathrm{I} \tag{3}
\end{equation*}
$$

where g is a primitive root $\bmod p$ satisfying $2 B x \equiv A(\bmod p)$, no two consecutive elements of which occur in the above period of (p - I) p elements. This can be seen as follows. We have according to the assumption $p \mid\left(A^{2}-4 B\right)$ and $p>2$. So the relation $(2 B g-A)^{2} \equiv A^{2}-4 B(\bmod p)$ can be written in the form

$$
B g^{2}-A g+\mathrm{I} \equiv \mathrm{o}(\bmod p)
$$

which implies

$$
\begin{aligned}
& B g^{3}-A g^{2}+g \equiv \mathrm{o}(\bmod p) \\
& \cdots g^{p-2}+g^{p-3} \equiv 0(\bmod p) \\
& B g^{p-1}-A g^{p-3}
\end{aligned}
$$

from which can be seen that the pair $g^{p-1}, g^{p-2}(\bmod p)$ according to (I) is followed by g^{p-2}, $g^{p-3}(\bmod p)$, etcetera. None of these pairs occurs in the above period of length $(p-I) p$.

The maximal number of times that each of the residues $\mathrm{o}, \mathrm{I}, \cdots, p-\mathrm{I}$ appears the collection of all distinct pairs is $2 p$. Each of the residues I , $2, \cdots, p-\mathrm{I}$ occurs twice in the set of pairs of consecutive residues taken from (3). Hence the maximal number of each of the residues $\mathrm{I}, 2, \cdots, p-\mathrm{I}$ occurring in the period of length $(p-1) p$ is reduced to $2 p-2$. Moreover the two residues o from the pair o, o have to be discarded. So the number of all residues occurring in that period does not exceed $p(2 p-2)=$ $=2 p(p-1)$. Since the number of pairs of consecutive elements is equal to $p(p-\mathrm{I})$, we see that the residues $\mathrm{o}, \mathrm{I}, \cdots, p-\mathrm{I}$ are equally distributed over this period, in fact each residue occurs p - I times. Because of the periodical continuation the recurrence is uniformly distributed mod p. Hence the theorem is true for $h=\mathrm{I}$.

Now assume the theorem is true in the case $h-\mathrm{I}$, or it is supposed that the least period of $\left(\mathrm{G}_{n}\right)$ modulus p^{h-1} of length $k\left(p^{h-1}\right)=(p-\mathrm{I}) p^{k-1}$ shows exactly p - I times each residue $\bmod p^{h-1}$.

Let e be any integer with $0 \leq e \leq p^{h}-\mathrm{I}$. Then the congruence

$$
\begin{equation*}
\mathrm{G}_{n} \equiv e\left(\bmod p^{k-1}\right) \tag{4}
\end{equation*}
$$

is satisfied by exactly p - I indices n between o and ($p-\mathrm{I}$) p^{n-1} - I. Let C be the set of these indices. Now suppose that the congruence

$$
\begin{equation*}
\mathrm{G}_{n} \equiv e\left(\bmod p^{h}\right), \quad 0 \leq n \leq(p-\mathrm{I}) p^{h}-\mathrm{I} \tag{5}
\end{equation*}
$$

is satisfied by some n, then by periodicity

$$
n \equiv c\left(\bmod (p-I) p^{k-1}\right) \quad \text { for some } \quad c \in C
$$

In the other direction we want to show that to any index $c\left(\bmod (p-1) p^{h-1}\right)$ with $\mathrm{G}_{c} \equiv e\left(\bmod p^{h-1}\right)$ there corresponds at most one index $n\left(\bmod (p-1) p^{h}\right)$ satisfying

$$
\begin{equation*}
\mathrm{G}_{n} \equiv e\left(\bmod p^{h}\right) \quad, \quad c \equiv n\left(\bmod (p-\mathrm{I}) p^{h-1}\right) . \tag{6}
\end{equation*}
$$

In order to do that let us suppose that we have besides (6) also

$$
\begin{aligned}
& \mathrm{G}_{m} \equiv e\left(\bmod p^{h}\right), \quad \mathrm{o} \leq m \leq(p-\mathrm{I}) p^{h}-\mathrm{I}, \\
& m \equiv c\left(\bmod (p-\mathrm{I}) p^{h-1}\right) \quad, \quad n \geq m .
\end{aligned}
$$

Then in particular

$$
\begin{equation*}
\mathrm{G}_{n} \equiv \mathrm{G}_{m}\left(\bmod p^{h}\right) \quad \text { and } \quad n \equiv m\left(\bmod (p-\mathrm{I}) p^{k-1}\right) \tag{7}
\end{equation*}
$$

In order to investigate the system (7) we use suitable representations for G_{n}.

Let θ_{1} and θ_{2} be the distinct roots of the quadratic equation $x^{2}-A x+B=0$. Then

$$
\begin{equation*}
\theta_{1}=\frac{1}{2}\left(A+\sqrt{A^{2}-4 B}\right) \quad \text { and } \quad \theta_{2}=\frac{1}{2}\left(A-\sqrt{A^{2}-4 B}\right) \tag{8}
\end{equation*}
$$

and G_{n} can be written in the form

$$
\begin{equation*}
\mathrm{G}_{n}=\frac{\left(b-a \theta_{2}\right) \theta_{1}^{n}-\left(b-a \theta_{1}\right) \theta_{2}^{n}}{\theta_{1}-\theta_{2}}, \quad n=\mathrm{o}, \mathrm{I}, 2, \cdots . \tag{9}
\end{equation*}
$$

By substituting (3) in (4) we obtain for G_{n} the following expression

$$
\begin{align*}
\mathrm{G}_{n} & =\frac{\mathrm{I}}{2^{n-1}}\left\{b \sum_{j=0}^{\infty}\binom{n}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-1}-\right. \tag{io}\\
& \left.-2 a B \sum_{j=0}^{\infty}\binom{n-\mathrm{I}}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-2}\right\}, \quad n=\mathrm{I}, 2, \cdots,
\end{align*}
$$

in which $\binom{n}{k}$ stands for zero if $k>n$.
Now the first congruence of (7) becomes

$$
\frac{\mathrm{I}}{2^{n-1}}\left\{b \sum_{j=0}^{\infty}\binom{n}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-1}-2 a B \sum_{j=0}^{\infty}\binom{n-\mathrm{I}}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-2}\right\}
$$

\equiv same expression with m instead of $n\left(\bmod p^{k}\right)$, or after multiplication of both members by 2^{n-1},

$$
\begin{gathered}
b \sum_{j=0}^{\infty}\binom{n}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-1}-2 a B \sum_{j=0}^{\infty}\binom{n-\mathrm{I}}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{n-2 j-2} \equiv \\
\equiv 2^{n-m}\left\{b \sum_{j=0}^{\infty}\left(A^{2}-4 B\right)^{j}\binom{m}{2 j+\mathrm{I}} A^{m-2 j-1}-\right. \\
\left.-2 a B \sum_{j=0}^{\infty}\binom{m-\mathrm{I}}{2 j+\mathrm{I}}\left(A^{2}-4 B\right)^{j} A^{m-2 j-2}\right\}\left(\bmod p^{h}\right) .
\end{gathered}
$$

We have $2(p-1) p^{h-1} \equiv \mathrm{I}\left(\bmod p^{h}\right)$, and because of the second congruence of (6) we obtain

$$
2^{n-m} \equiv \mathrm{I}\left(\bmod p^{n}\right) .
$$

Hence, taking also into account that $p \mid\left(A^{2}-4 B\right)$, we write the congruence under investigation in the following form:

$$
\begin{equation*}
\dot{b} \sum_{j=0}^{h-1}\left(A^{2}-4 B\right)^{j}\left\{\binom{n}{2 j+\mathrm{I}} A^{n-2 j-1}-\binom{m}{2 j+\mathrm{I}} A^{m-2 j-1}\right\}- \tag{II}
\end{equation*}
$$

$$
-2 a B \sum_{j=0}^{n-1}\left(A^{2}-4 B\right)^{j}\left\{\binom{n-1}{2 j+1} A^{n-2 j-1}-\binom{m-1}{2 j+1} A^{m-2 j-2}\right\} \equiv \mathrm{o}\left(\bmod p^{h}\right)
$$

Now

$$
\binom{n}{2 j+\mathrm{I}} A^{n-2 j-1}-\binom{m}{2 j+\mathrm{I}} A^{m-2 j-1}=A^{m-2 j-1}\left\{\binom{n}{2 j+\mathrm{I}} A^{n-m}-\binom{m}{2 j+\mathrm{I}}\right\},
$$

and since $(p-1) p^{h-1} \mid(n-m)$ and $(A, p)=1$, the last expression is congruent to

$$
A^{m-2 j-1}\left\{\binom{n}{2 j+1}-\binom{m}{2 j+1}\right\}\left(\bmod p^{h}\right),
$$

since $A^{n-m} \equiv \mathrm{I}\left(\bmod p^{h}\right)$. Hence (II) can be written in the form

$$
\begin{gather*}
b \sum_{j=0}^{n-1}\left(A^{2}-4 B\right)^{j} A^{m-2 j-1}\left\{\binom{n}{2 j+\mathrm{I}}-\binom{m}{2 j+\mathrm{I}}\right\}- \tag{I2}\\
-2 a B \sum_{j=0}^{h-1}\left(A^{2}-4 B\right)^{j} A^{m-2 j-2}\left\{\binom{n-\mathrm{I}}{2 j+\mathrm{I}}-\binom{m-\mathrm{I}}{2 j+\mathrm{I}}\right\} \equiv \mathrm{o}\left(\bmod p^{h}\right) .
\end{gather*}
$$

Now consider the terms occurring on the left hand side of (i2) with $j \geq \mathrm{I}$. The largest exponent l such that p divides $(2 j+i)$! satisfies

$$
l=\sum_{i=1}^{\infty}\left[\frac{2 j+\mathrm{I}}{p^{i}}\right]<\sum_{i=1}^{\infty} \frac{2 j+\mathrm{I}}{p^{i}}<j, \quad \text { since } \quad p>2 .
$$

Hence the integers of the type $\left(A^{2}-4 B\right)^{j}\binom{n}{2 j+1}$ occuring as factors of terms in the above congruence (12) contain at least one factor p. Moreover
the expressions

$$
(2 j+\mathrm{I})!\left\{\binom{n}{2 j+\mathrm{I}}-\binom{m}{2 j+\mathrm{I}}\right\} \quad \text { and } \quad(2 j+\mathrm{I})!\left\{\binom{n-\mathrm{I}}{2 j+\mathrm{I}}-\binom{m-\mathrm{I}}{2 j+\mathrm{I}}\right\}
$$

contain the factor $n-m$ and hence the factor $(p-1) p^{h-1}$. Hence the terms in (I2) with $j \geq \mathrm{I}$ all have p^{h} as divisor, and so (I2) reduces to the term with $j=\mathrm{o}$, or

$$
b A^{m-1}(n-m)-2 a B A^{m-2}(n-m) \equiv 0\left(\bmod p^{h}\right)
$$

or

$$
(n-m)(b A-2 a B) \equiv 0\left(\bmod p^{h}\right)
$$

This implies that $n \equiv m\left(\bmod p^{h}\right)$, since it is assumed that $(b A-2 a B, p)=1$ and $(A, p)=$ i. Hence $n=m$, and so we conclude that there are exactly p - I elements of each residue class in the first period of $(p-1) p^{h}$ elements. This implies that because of periodicity the recurrence $\left(\mathrm{G}_{n}\right)$ is uniformly distributed $\bmod p^{h}$. Herewith the theorem is completely established.

Examples 1 . By taking $a=\mathrm{I}, b=\mathrm{I}, A=\mathrm{I}, B=-\mathrm{I}$ one obtains the Fibonacci sequence which has mod 5^{h} the period $4 \cdot 5^{h}$. Hence the Fibonacci sequence is uniformly distributed $\bmod 5^{h}(h=1,2, \cdots)$, a property already known [3].
2. The sequence obtained by taking $a=\mathrm{I}, b=\mathrm{I}, A=\mathrm{I}, B=-3$, has $\bmod 13^{h}$ the period $12 \cdot 13^{h}$. The congruence $2 B x \equiv A(\bmod 13)$ is satisfied by the primitive roots $2(\bmod 13)$. Hence the sequence is uniformly distributed mod $13^{h}(h=1,2, \cdots)$.

Unsolved problems. Take $a=\mathrm{I}, b=\mathrm{I}, A=3, B=-\mathrm{I}$. The sequence has period 4.I $3^{h}\left(\bmod 13^{h}\right)$. Is the sequence uniformly distributed mod 13^{h} ? It is easily checked that this is the case for $h=\mathrm{I}$. The same question arises in the cases $a=\mathrm{I}, b=3, A=3, B=-\mathrm{I}$ and $a=\mathrm{I}, b=5, A=3$, $B=-\mathrm{I}$.

References

[I] I. Niven, Uniform distribution of sequences of integers, «Trans. Amer. Math. Soc.», 98, 52-61 (1961).
[2] M. Ward, The arithmetical theory of linear recurring series, «Trans. Amer. Math. Soc.», 35, 600-628 (1933).
[3] H. Niederreiter, Distribution of Fibonacci numbers mod 5 ${ }^{h}$, Fibonacci Quarterly.

[^0]: (*) Nella seduta del 15 gennaio 1972 .

