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Teoria dei numeri. — A4 distribution property of a lincar recur-
vence of the second order. Nota di LAWRENCE KUIPERS e JAUu-sHYONG
SHIUE, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Si ottengono proprieta di distribuzione uniforme relative a successioni
di interi definite da certe formule ricorrenti rispetto ad un modulo che sia potenza di un numero
primo.

Let 4, B, @ and é be fixed rational integers, let 4 and B be different
from zero and let the equation 22 — 4z — B = o have distinct nonzero roots.

Let @ and 4 be not both equal to zero. Consider the linear recurrence of the
second order (G,), defined by

(1) Go=a , Gi=6 , G, =4G,— BG,_,, N=1,2, .

In the present paper we establish a uniform distribution property of
the above recurrence (G,) with regard to a modulus 7 being equal to a power
of a prime p under certain assumptions concerning the period £ (%) of (G,)
modulo 7.

Definition of uniform distribution mod m. Let m be an integer > 2 and

let (x,), = 1,2, .- be a sequence of integers. Let 7 be any element of
the set {o,1,---,m—1}. Let N be an arbitrary positive integer. Let
A(N, j,m) denote the number of (x,), z=1,2,- .+, NV, that are congruent

to 7 mod z. The sequence (x,) is said to be uniformly distributed mod 7 if

(2) lim AN, 7, m)|N = 1/m for j=o0,1, -, m—1 [I1].
N—>oc0

Let p be a prime number and let m = ph(h=1,2,---). Let k= k(PP
the least positive integer for which both congruences

G, = Go (mod %) , Gy = G1 (mod 5%

are satisfied. The integer % (%) is the least period of (G,). That such periods

exist and can be evaluated, if @, 6, 4 and B are given, follows from the fun-

damental theorem on purely periodic sequences due to Morgan Ward [2].
- We want to establish the following result.

THEOREM. Let p be a prime and let (1) be a linear recurvence of the second
order such that

p>2 , plA*—4B) , A, p)=1 , (A—z2aB,p)=1

(*) Nella seduta del 15 gennaio 1972.
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It is assumed that k (p*) = (p — 1) p* is the smallest period of (G,) mod p*,
k=1,2, --. Furthermore it is assumed that the congruence 2 Bx = A (mod p)
is satisfied by a primitive voot mod p. Then the sequence (G,) is uniformly
distributed mod p* for h=1,2, -

Proof. We prove the theorem first for 2= 1. Upon reduction mod p
the terms of the reduced sequence (G,) assume only values taken from the
set {o,1,---,p—1}. There are p2— 1 distinct pairs of two consecutive
terms, since the occurrence of the pair o, 0 would imply ¢ = 0,4 = 0. The
period in the case # = 1 according to the assumption is equal to (» — 1) 2,
so the period shows already p2% — p distinct pairs of two consecutive terms.
There is however a string of p — 1 elements, namely the residues mod »
of the integers

(3) gp—l’ gp—2’. ) g2’ g1,

where g is a primitive root mod p satisfying 2 Bx = 4 (mod p), no two
consecutive elements of which occur in the above period of (p —1)p ele-
ments. This can be seen as follows. We have according to the assumption
#| (A% —4B) and p > 2. So the relation (2 Bg— A)’ = A® — 4 B (mod p)
can be written in the form

Bg2— Ag + 1 = 0o (mod p),

which implies
Bg®— Ag? + g = o (mod p),

................................

Bgt—1 — Agt=2 4 g¢=3 = 0 (mod p),

from which can be seen that the pair g?-1, ¢#~2 (mod p) according to (1) is
followed by g?-2, g#—3 (mod p), etcetera. None of these pairs occurs in the
above period of length (» — 1) 2.

The maximal number of times that each of the residues o, 1,---, p—1
appears the collection of all distinct pairs is 2 p. Each of the residues
1,2, -+,p—1 occurs twice in the set of pairs of consecutive residues taken
from (3). Hence the maximal number of each of the residues 1,2 ,-++, p—1
occurring in the period of length (» — 1) p is reduced to 2 p — 2. Moreover
the two residues o from the pair o, 0 have to be discarded. So the number
of all residues occurring in that period does not exceed p (2 p—2) =
=2 (p—1). Since the number of pairs of consecutive elements is equal
to p (» — 1), we see that the residues 0, 1,:--, p — 1 are equally distributed
over this period, in fact each residue occurs p — 1 times. Because of the
periodical continuation the recurrence is uniformly distributed mod p. Hence
the theorem!is true for 4 = 1.

Now assume the theorem is true in the case 2 — 1, or it is supposed that
the least period of (G,) modulus p#~1 of length £(p*~1) = (p —1) p*~1 shows
exactly p — 1 times each residue mod p#-1. '
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Let ¢ be any integer with 0 <e < p#— 1. Then the congruence
@ G, =e (mod 1)

is satisfied by exactly p—1 indices # between o and (p—1)p" 1 —1.
Let C be the set of these indices. Now suppose’that the congruence

) G,=e¢ (modph), o=n<(p—1)p—1
is satisfied by some 7z, then by periodicity
n=c¢ (mod (p — 1) p* 1) for some c¢€C.

In the other direction we want to show that to any index
¢ (mod (p — 1) p*~1) with G, = e (mod p*~1) there corresponds at most one
index 7 (mod (p — 1) p*) satisfying

6) G,=¢ (mod p" , ¢=n (mod(p—1)p+).
In order to do that let us suppose that we have besides (6) also
G,, = ¢ (mod p*), o<m<(p—1)pt—1,
m=c¢ (mod (p—1)p" 1) |, w>m.
Then in particular
@) G, =G,, (mod p* and z# =wm (mod (p — 1) p*1).

In order to investigate the system (7) we use suitable representations
for G,,.

Let 61 and 62 be the distinct roots of the quadratic equation
—Ax +B =o0. Then

® =L@+ L—4B) and =L)AL —4B),
and G, can be written in the form

Gn- 01 — 02 ’ 7=0,1,2,"""

© (6— aby) 67 — (5— ab),) 6

By substituting (3) in (4) we obtain for G, the following expression

I S 2 F oqn—27—1
(10) Gu= Zr ) 2,(2]+I>(A 4 B4V
— 24B L(z@?r) 4B>J'A"““—2€, n=1,2, ",

in which <Z) stands for zero if £ > .

Now the first congruence of (7) becomes

2”1“1 3612)(2;'1:)(A2*4B>’~A"—2" '—24B 2(;’;i>(,42 4B)"A”‘2f“2§
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= same expression with » instead of z (mod p#), or after multiplication of
both members by 27-1,

bi(2]+1)(A2—4B)’A ~2i-1__, ,.n g(n—l)(A2—4B)jA"’2"‘2E

= 2741
_ —m < . 7 m—2j—1__
- Zé]§)< 45) (2/—!—1)‘4
—2aB ;0 ( ;”]jr II ) (4® — 4B)fA”‘“2j‘2% (mod p%).

7

We have 2 (p — 1) p"~1 = 1 (mod p*), and because of the second con-
gruence of (6) we obtain

2" =1 (mod p*).

Hence, taking also into account that p | (A® — 4 B), we write the congruence
under investigation in the following form:

(11) /‘i} (A2”4B)j'3<2j11 )An——Zj—-l_(Zjﬂj_I >Am—2j—1 o

—raB Gt By | ) A (1) A =0 (e

Now

A A ()

and since (p — 1) p*~1| (n—m) and (4, p) = 1, the last expression is con-
gruent to

)=
since 4”7” = 1 (mod p*). Hence (11) can be written in the form
~ (21‘11>—(2J‘”j{— I)%_
i1

e Ll C I R L ER

h—

(12) b 2 (A* — 4 By A"

-t

Now consider the terms occurring on the left hand side of (12) with 7> 1.
The largest exponent / such that p divides (27 + 1)! satisfies

=)
=1

Hence the integers of the type (A° ~4B)J(

<y, since p > 2.

2741 N\ 241
$]< J
s MY

~

occuring as factors of
2j 41 > g

terms in the above congruence (12) contain at least one factor p. Moreover
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the expressions

. ! n . 7 . | 5 7n-—1 - wm—1
Ci+ 0L =G e @it el
contain the factor # — 7 and hence the factor (» — 1) p#~1. Hence the terms
in (12) with 7 > 1 all have p* as divisor, and so (12) reduces to the term with
J =0, or
64" (n—m) —2aBA" " (n—m) = o (mod p%)

or
(n—m) (bA— 2 aB) = o (mod p%).

This implies that 7 = 7 (mod p%), since it is assumed that (b4 — 2 @B, p) = 1
and (4, p) = 1. Hence # = m, and so we conclude that there are exactly
» — 1 elements of each residue class in the first period of (p — 1) p* elements.
This implies that because of periodicity the recurrence (G,) is uniformly
distributed mod p*. Herewith the theorem is completely established.

Examples 1. By taking a =1, =1, A =1, B=—1 one obtains
the Fibonacci sequence which has mod 3% the period 4-3%. Hence the
Fibonacci sequence is uniformly distributed mod §* (4= 1,2, --), a pro-

perty already known [3].

2. The sequence obtained by taking a=1,6=1,4=1,B=—3,
has mod 13" the period 12-13% The congruence 2 Bx = A (mod 13) is satisfied

by the primitive roots 2 (mod 13). Hence the sequence is uniformly distri-
buted mod 13* (h=1,2,--.).

Unsolved problems. Take a=1,b=1,4=3,B=—1. The sequence
has period 4.13% (mod 13%). Is the sequence uniformly distributed mod 13%?
It is easily checked that this is the case for 2 = 1. The same question arises
in the cases =1 y0=3,A=3,B=—1 and a=1,b=35,A4A=3,
B=—1.
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