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Fisica matem atica. —  On the mathematical structure o f a large 
class o f physical t h e o r i e s Nota di E n zo  T o n t i ,  p re s e n ta ta ^  
dal Socio B. F in z i.

R iassunto. — Si mette in evidenza una struttura matematica comune a differenti teorie 
fisiche allo scopo di costruire un modello matematico valido per molte di esse.

i . i .  I n t r o d u c t io n

M any physical theories show formal similarities due to the existence of 
a common mathematical structure. This structure is independent of the 
physical contents of the theory and can be found in classical, relativistic and 
quantum  theories; for discrete and continuous systems. In particular many 
field theories of different tensorial order exhibit such a structure.

Traditionally the study of similar structures is the subject of the 
mathematical field theory. Its starting point is the existence of an action 
principle from which field equations are deduced U). Field theory is parti­
cularly suitable for fundamental theories as electromagnetism, gravitation 
and quantum theories [1], [2].

Qur approach in this paper is based on a different point of view: we 
ascertain the existence of a decomposition of the fundamental equation into 
three sets of equations. Typically these are balance, definition and constitutive 
equations. A deeper insight is so gained which reveals the underlying structure 
of the fundamental equation: in particular this allows us to ascertain the 
existence of an action principle for the fundamental equation. In some 
theories as electromagnetism and continuum mechanics the three sets of 
equations are more primitive than the fundamental equation obtained com­
bining them. In other theories, as in quantum field theories, the fundamental 
equation is more primitive and a decomposition can often be achieved.

In  the context of analytical mechanics and field theories the canonical form 
of the fundamental equation is an example of decomposition. We shall show 
that whenever a canonical decomposition can be achieved it is also possible 
to obtain the decomposition in the three sets of equations as stated above. 
But we shall see also that the last decomposition is more general, being 
possible also when a canonical decomposition cannot be obtained [8]. (*) (**)

(*)j This work has been sponsored by C.N.R. Author’s address: Istituto di Matematica 
del Politecnico, piazza Leonardo da Vinci 32, 20133 Milano (Italia).

(**) Nella seduta dell’n  dicembre 1971.
(1) In the sequel field equations, wave equations and equations of motion will be 

denoted with the unique name fundam ental equations.



[49] Enzo Tonti, On the mathematical structure, ecc. 49

1.2 . C o m p a r in g  d i f f e r e n t  p h y s ic a l  t h e o r ie s

In every physical theory we can evidentiate some configuration variables 
that describe the configuration of the system or of the field and some source 
variables that describe the sources of the phenomenon. So for ex. lagrangian 
coordinates in analytical mechanics, the displacement vector in mechanics 
of continua, the electromagnetic potentials in electromagnetism are examples 
of configuration variables. Forces, charges, currents, heat production density 
are examples of source variables.

Besides these two quantities we can find in many theories some interme­
diate variables as velocities and momenta in mechanical theories, stress and 
strain tensors in continuum mechanics, the two electromagnetic tensors in 
electromagnetism, fluxes and affinities in irreversible thermodynamics. A 
characteristic of these intermediate variables is that they appear always in 
pairs, those of every pair having the same tensorial order that is not inferior 
to that of configuration and source variables (that, in turn, have the same 
tensorial order).

The introduction of intermediate variables is linked to the existence of 
three kinds of equations which compose the fundamental equation. They are

a) definition equations, that define some intermediate variables by 
means of first order partial or total derivatives of the configuration variables, 
typically in form of gradients in field theories. We shall denote these varia­
bles as variables of first kind. In some theory definition equations are non­
linear as in analytical mechanics (see Table I) and in large displacement theory 
of continuum mechanics (see eq. 1.4.7), Definition equations do not contain 
material parameters nor physical constants.

b) balance equations, which relate source variables to some other inter­
mediate variables that we shall call of second kind  by means of time derivatives 
or divergences. They are the local formulation of a global balance from which 
they are obtained by using Gauss divergence theorem and its generalization 
for tensors of any order. Balance equations are linear in the variables of 
second kind even when the associated definition equations are nonlinear (see 
for ex. those bf analytical mechanics in Table I and that of large displacement 
theory given by eq. (1.4.10)).

c) constitutive equations, that relate the variables of first kind to those 
of second kiind and directly source with configuration variables. Typically they 
contain characteristic parameters of the media and physical constants.

Table I shows the three kinds of equations for some physical theory. Con­
nected with these three kinds of equations there are two more kinds of equations 
we shall speak of now. In field theories there are variables of first kind that 
are greater in' number than configuration variables and then they are linked 
by some compatibility conditions. Examples are Saint-Venant compatibility

conditions in continuum mechanics, the condition curl E in electrostatics,

4. — RENDICONTI 1972, Voi. LII, fase. 1.
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T a b l e  I.

Theory Balance
equations

Constitutive
equations

Definition
equations

Particle dynamics 
(classical) . . . . d h  ,

d t f t h — m a hk v k (*) r def d ^

(relativistic) . . . .
d i  Jh

j. ahk , j .
p h =  , , v

1 / - ^

, def d #
* “  “dT

Space-time formu­
lation .................

dPa K 
dT -  K“

yß def dX ß 
dv

Analytical mechanics y  3X!' d P. _ 0l II s <2:

Elastodynamics . . yjk . , V i  ,
- V  Phh +  -9 y  — Jh

 ̂fihk ~  ^hkrs eTS

\ h  = ? ah k vk

^ e r s — ± - ( u r l s + u s,r)

) , def duk f vk =  ——\ 3/

Viscoelasticity . . . P hk =  f h

t

fihk=  \ ^ h k r s  *
0 3 

• —— ers (t) d r  d T

+  2//r)

Electromagnetism .
( V h =  p ( =  

j Hj =  Vf/ B l

( * * £ - * .
j B* =  z lij  V, A-7

(Space-time formu­
lation) ............... v a/ ag =  J0 /aß =  Ga0po Fp° Fpa Af ®p/° _  ®°/p

Irreversible thermo­
dynamics . . . . d i v h  =  Gk ~Sk — ^  ; L kj Fy Fy =  grad Zy

Heat conduction. . v * ^  +  ^  =  «
\^qh =  \ { T ) a h k ^

=  — V^T

Quantum mechanics 
(Schrödinger) . . 9h +  =  0

/ Ä2 ■ ,
) qh ~  2OT a h k V , def a , Z)k =  — y

(Klein-Gordon) . . V“ ?a +  T =  a
Ì t  =  (m 0 c f  t|>

ß def ft ,/  =  V ^

(*) ahk denotes the metric tensor in the three dimensional space; gaß that of space-time. 
Latin indexes range between 1 and 3, Greek indexes range between 0 and 3. Tensor indexes 
are summed when repeated.
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one set of Maxwell equations (see eq. 1.2.5) in electromagnetism. If 9 denotes 
the set of configuration variables, u  that of variables of first kind, 3) denotes 
the formal differential operator of definition equation, the last can be written

(1.2.1) u = .® 9  .

In many cases the vanishing of 9 does not imply the vanishing of u because 
there are impressed uQ, i.e.

(1.2.2) u — 3>9 +  u0.

In this case the compatibility conditions can be written in the form
def

(1.2.3) $ x u  =  T ( t  =  £Hu0 ; SIS) == o)

and the term t  appears as a source of “ incompatibility ” . Typical is the incom­
patibility tensor r\H in continuum mechanics given by

( I •2 4) *lhr Ztks V* V4 ers =  f\H

used in the theory of dislocations [3]. Another example is that of the postu­
lated magnetic current density (the Dirac monopole) in Maxwell equations

(1-2-5) ^ WVSFW =  J“ag„.

In this case the incompatibility tensor t  of eq. (1.2.3) will be called 
dual source variable and eq. (1.2.3) dual balance equation. In theories where 
the configuration variables are measurable quantities, definition equations are 
more primitive than dual balance equations: this is the case of heat conduction 
and continuum mechanics (see Table I). In theories where configuration 
variables are nonmeasurable quantities the dual balance equations are more 
primitive than definition equations, as in the case of electromagnetism.

Balance equations in field theories admit a general solution: if <7 denotes 
the source variables, v the variables of second kind and cB the formal diffe­
rential operator of balance equations these can be written in the form

(1.2.6) gBz; =  a .

The general solution will be of the form

(1.2.7) v =  ^  +  vQ .

Because of the resemblance of this equation with definition equation (1.2.2) 
we shall call; eq. (1.2.7) dual definition equation and dual configuration 
variable. Examples of such equations are the general solution of the equi­
librium equations of statics of continua [4]

( 1.2.8) P h k  =  z hii  z kjm V‘ v j x lm +  P f !

being the stress potential. The dual definition equation gives the general 
solution of balance equation that, in turn, expresses the compatibility conditions
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for the defined variables. The equation that link the dual configuration varia­
bles and the dual source variables will be called dual fundam ental equation. 
Table II display the relative position of the various variables and equations.

T ab le  II.

Up to now we have considered only formal differential operators. A less 
formal study of the various equations require the consideration of the initial 
and boundary conditions associated to the equations. In this way we are 
led to consider operators instead of formal operators.

1.3. B ilin e a r  fu n ction a ls: th e ir  importance

In m any physical theories we use bilinear forms formed by products 
of two variables of the same tensorial order. From these bilinear forms one 
can obtain bilinear functionals integrating on space and time variables. 
Examples are shown in Table III. Bilinear functionals play a fundamental 
part in defining the adjoint of a linear operator. If O and E are two spaces 
p u tin  duality by a bilinear functional (<7,<p)I( [5], and U ,V  are two more 
spaces put in duality by a bilinear functional (v , u )n then given a linear

operator L : <D K  U its adjoint is defined as the linear operator L : V S 
such that

(i-3-O {v , L<p)n =  (Lo , cp)1.
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Table III.
Bilinear functionals used in some physical theories.

E lectrostatics.............................. <P.?> =  \ f f  P 9 d V
" V

E lectrom agnetism ..................... <J.®> =  f j f j  J a® “ d ß
Q

Statics of c o n t in u a ................. </>«) =  f f f  f i  uk dV
'v

Particle mechanics . . . . .
T

(F , r) =  J F& xk dt
o

Classical gravitation . . . . . (p» > 9> =  f f f  pm ? dV
"v..

Relativistic theory of gravitation ( ^ t D - f f f f r ^ a a
Q

Thermal f ie ld .............................. (a ,T) =  f f j  <tT dV 
'v

Fluidynamics . ..........................

T

< / . v) =  f f f  f  f k vk dV dt  
ir o

Analytical statics . . . . . .
n

(Q > g )  =  L k Q k ik 
1

Analytical dynamics . . . .

T

<Q - 1) =  / L i  Qi 9k dt  
10

Quantum m echan ics.................
T

(<*,<]>)= f f f  f  W  dV
'v* Ò

Thermostatics .......................... <y . x ) = | 4 y
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Fig. I shows the mutual relation between L and L.

Fig. I.

We emphasize the fact that to define the adjoint of an operator two bilinear 
functionals are needed, i.e. two pairs of spaces. The reason why usually 
only one bilinear functional is used is because we usually work in Hilbert 
spaces where the bilinear functional reduces to the scalar product of two 
elements of the same space [6].

1.4. R e l a t i o n  b e t w e e n  t h e  o p e r a t o r s  o f  b a l a n c e
AND DEFINITION EQUATIONS

If in every physical theory a comparison is made between the differential 
operators that form the equations of definition and the equations of balance 
one discovers that they are linked by a simple and important relation. We 
show here some examples.

1) The equations of electrostatics

(1.4.0
j V-D =  p

i n -D =  o on Si

 ̂ E =  — V-p

? cp =  o on S2

being Si U S2 =  S, are formed with the two operators that are one adjoint 
of the other with respect to the bilinear functionals

( I -4-0 <P , 9> =  jJ J p ?  dv <D , E> =  I I I D,E* dV.

2) Analogous property is shown by the two equations of statics of 
continua

\ — v 1 Pu  = / t   ̂ ehk =  -  («*/* +  «*'*)

\ nk Phk — °  on Si ) a* =  o on Sj
(1-4-3)
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whose operators are adjoint one of the other with respect to the two bilinear 
functionals

(1.4.4) < /,«> f h uh dV ///{P,e)= I I I Pkkehk dV
In evolution theories where time derivatives enter into balance equations 

the relation of adjointness between balance and definition operators can be 
discovered using a convolution bilinear functional [6].

3) For example particle dynamics governed by Newton equation of 
motion, can be decomposed into the three equations

(i-4-5)
&Ph _  /
d  t  J h lPh =  mahk vk

ph (°) =  °

k

xk(p) =  o

that represent respectively balance, constitutive and definition equations. 
If we consider the bilinear functionals

(1.4.6)
T

0

T

{P ,v )c =  j  p k(t)vk(T f) àt 
0

in which the convolution of two functions is used, then the operators of the 
two sets are adjoint one of the other.

4) In some theory in which definition equations are nonlinear the 
following fact arises : the operator of balance equation is the adjoint of the 
derivative of the operator of definition equation.

So, for ex. in the large displacement theory of continuum mechanics, 
the Green strain tensor given by (see [7])

C1 -4*7)
I ehk — — (uh!k -j- uk!h -f- ul!h u jk) 

( uh — o on S i ,

has first variation as

(1.4.8) 8ehk =  1_ çyh §uk _j_ yk ^uh _|_ y* i ui u ik +  um y k

that is linear in the variations 8up. Using the two bilinear functionals (1.4.4) 
we obtain the identity

(1.4.9) JJJ p hi -  (Vh8u +  Vk 8u +  Vh8u u j k +  um Vk8%)] dV =
Y

-  JJJ -  v" [(§/ +  u lh) p hk\ 8*/dV +  ÿ  n \ t +  u lh) p hk 8«'dS .
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When boundary conditions on u l are taken into account one obtains as adjoint 
operator that of equilibrium equation

, N ( - V ( S  i+u>*) pu = f ,
O-4-io) j , , ,,

( n (8/ +  u jh) p hk — o on S2

being p hk the Kirchhoff stress tensor [7].
Summarizing we can say that in many physical theories the operator of 

balance equation and that of definition equation are mutually adjoint with respect 
to some bilinear form  {when the last is lineai*); while i f  the definition equation 
is nonlinear the operator of balance equation is adjoint o f the derivative of the 
definition operator. This relation of adjointness plays a fundamental part in 
the structure of the mathematical model of physical theories we shall build 
up in other papers [8].
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