ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

H. O. TEJUMOLA

Further results on the Boundedness and the Stability of certain fourth order differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.1, p. 16–23. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_1_16_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni differenziali. — Further results on the Boundedness and the Stability of certain fourth order differential equations. Nota di H. O. Tejumola, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — Si dimostrano due Teoremi sulla limitatezza e stabilità delle soluzioni di una classe di equazioni differenziali non lineari del quarto ordine.

I. INTRODUCTION

Consider the fourth order differential equation

(I.I)
$$x^{(4)} + \varphi_1(\ddot{x})\ddot{x} + a_2\ddot{x} + \varphi_3(\dot{x}) + a_4x = p(t, \dot{x}, \ddot{x}, \ddot{x})$$

in which $a_2 > 0$, $a_4 > 0$ are constants and the functions φ_1 , φ_3 and p which depend only on the arguments displayed are such that $\varphi_1(z)$, $\varphi_1'(y)$, p(t,x,y,z,u) are continuous for all x,y,z,u and t. In the case $p \equiv 0$ in (I.I), Ezeilo [I] showed that if $\varphi_3(0) = 0$ and there are constants $a_1 > 0$, $a_3 > 0$ such that

(1.2)
$$\varphi_3(y)/y \ge a_3(y \ne 0)$$
 and $\varphi_1(z) \ge a_1$ for all z ,

(1.3)
$$\{a_1 a_2 - \varphi_3'(y)\} a_3 - a_1 a_4 \varphi_1(z) \ge \Delta_0$$
 (arbitrary y and z)

for some constant $\Delta_0 > 0$,

(1.4)
$$\phi_3'\left(y\right) - \phi_3\left(y\right) / y \leq \delta_1\left(y \neq 0\right),$$

where δ_1 is a constant such that $\delta_1 < 2 \Delta_0 a_4 a_1^{-1} a_3^{-2}$,

(1.5)
$$z^{-1} \int_{0}^{z} \varphi_{1}(s) ds - \varphi_{1}(z) \leq \delta_{2}(z \neq 0),$$

where δ_2 is a constant such that $\delta_2 < 2 \Delta_0 a_1^{-2} a_3^{-1}$, then every solution x(t) of (1.1) satisfies

(1.6)
$$x(t) \to 0$$
, $\dot{x}(t) \to 0$, $\ddot{x}(t) \to 0$, $\ddot{x}(t) \to 0$ as $t \to \infty$.

The conditions (1.2) and (1.3) together with $a_i > 0$, i = 1, 2, 3, 4 are suitable generalizations of the Routh-Hurwitz conditions

$$a_i > \mathrm{o} \quad (i = \mathrm{i} \ , \, \mathrm{2} \ , \, \mathrm{3} \ , \, \mathrm{4}) \ , \qquad (a_1 \, a_2 - a_3) \, a_3 - a_1^2 \, a_4 > \mathrm{o}$$

(*) Nella seduta dell'11 dicembre 1971.

for the asymptotic stability (in the large) of the trivial solution of the linear equation

$$x^{(4)} + a_1 \ddot{x} + a_1 \ddot{x} + a_3 \dot{x} + a_4 x = 0.$$

For the general case $p \equiv 0$, the present author [2] showed that if, in addition to the above conditions, p is a bounded function, then every solution of (1.1) is ultimately bounded.

The main object of the present note is to extend these results to equations of the form

$$(1.7) x^{(4)} + \varphi_1(\ddot{x})\ddot{x} + \varphi_2(\ddot{x}) + \varphi_3(\dot{x}) + a_4 x = p(t, x, \dot{x}, \ddot{x}, \ddot{x})$$

of which (1.1) is a special case corresponding to $\varphi_2(\ddot{z})$ linear in (1.7). We shall prove here

THEOREM 1. Suppose, given the equation

(1.8)
$$x^{(4)} + \varphi_1(\ddot{x})\ddot{x} + \varphi_2(\ddot{x}) + \varphi_3(\dot{x}) + a_4 x = 0,$$

that

(i)
$$\varphi_2(0) = 0 = \varphi_3(0)$$
,

(ii) there are constants $a_1 > 0$, $a_2 > 0$, $a_3 > 0$ such that each of (1.2), (1.3), (1.4), (1.5) and the following hold:

(1.9)
$$0 \leq (\varphi_2(z)/z - a_2) \leq \varepsilon_0 a_3^3/a_4^2 (z \neq 0),$$

where ε_0 is a positive constant such that

$$(\text{1.10}) \qquad \epsilon_0 < \epsilon \leq \left[\frac{a_4}{a_3} \; , \; \frac{\Delta_0}{a_1 \, a_3 \, \Delta_1} \; , \; \frac{a_1}{4 \, \Delta_1} \left(\frac{2 \, \Delta_0}{a_1^2 \, a_3} \, - \, \delta_2 \right) , \; \frac{a_3}{4 \, a_4 \, \Delta_1} \left(\frac{2 \, a_4 \, \Delta_0}{a_1 \, a_2^2} \, - \, \delta_1 \right) \right] \; ,$$

 $\Delta_1 = a_1 a_2 + a_2 a_3 a_4^{-1}$. Then every solution x(t) of (1.8) satisfies (1.6). For the case $p \equiv 0$, we shall prove

THEOREM 2. Let hypotheses (i) and (ii) of Theorem 1 hold and suppose further that

$$|p(t, x, y, z, u)| \le A < \infty$$

for all values of t, x, y, z and u. Then there exists a finite constant D > 0 whose magnitude depends only on φ_1 , φ_2 and φ_3 as well as on a_1 , a_2 , a_3 , a_4 , δ_1 , δ_2 , Δ_0 and A such that every solution x(t) of (1.7) satisfies

$$(1.12) |x(t)| \le D, |\dot{x}(t)| \le D, |\ddot{x}(t)| \le D, |\ddot{x}(t)| \le D$$

for all $t \ge t_0$ (0 $< t_0 < \infty$).

A generalization of the Theorem will be given in § 5.

2. - RENDICONTI 1972, Vol. LII, fasc. 1.

2. Some Preliminaries

A function $W_0(x,y,z,u)$. The main tool in the proofs of Theorems 1 and 2 is the differentiable function $W_0=W_0(x,y,z,u)$ defined by

$$\begin{split} (2.1) \qquad 2 \; \mathbf{W_0} &= a_4 \; \mathbf{d_2} \, x^2 + (a_2 \, \mathbf{d_2} - a_4 \, \mathbf{d_1}) \, y^2 + 2 \int\limits_0^y \phi_3 \left(\eta \right) \, \mathrm{d} \eta \, + \, 2 \int\limits_0^z \eta \phi_1 \left(\eta \right) \, \mathrm{d} \eta \\ &+ 2 \int\limits_0^z \{ \, \mathbf{d_1} \, \phi_2 \left(\eta \right) - \mathbf{d_2} \, \eta \} \, \mathrm{d} \eta \, + \, \mathbf{d_1} \, u^2 + \, 2 \, a_4 \, xy \, + \, 2 \, a_4 \, \mathbf{d_1} \, xz \\ &+ \, 2 \, \mathbf{d_1} \, z \phi_3 \left(y \right) \, + \, 2 \, \mathbf{d_2} \, yu \, + \, 2 \, zu \, + \, 2 \, \mathbf{d_2} \, y \int\limits_0^z \phi_1 \left(\eta \right) \, \mathrm{d} \eta \end{split}$$

where

(2.2)
$${
m d}_1 = {
m e} + a_1^{-1} \;\; , \quad {
m d}_2 = {
m e} + a_1^{-3} \, a_4^{} ,$$

 $\epsilon > 0$ being the constant in (1.10).

Notations. In what follows the capitals D, D_0 , D_1 , \cdots denote finite positive constants whose magnitudes depend only on the functions φ_1 , φ_2 , φ_3 and p as well as on the constants a_1 , a_2 , a_3 , a_4 , δ_1 , δ_2 , Δ_0 , ε_0 , and ε , but are independent of solutions of whatever differential equation under consideration. The D_i 's, i=0, I, 2 retain a fixed identity throughout, but the D's without suffixes attached are not necessarily the same each time they occur.

3. Proof of Theorem 1

The procedure here is the same as in [1] and we shall only sketch the outline. Consider, instead of (1.8), the equivalent system

(3.1)
$$\dot{x} = y$$
, $\dot{y} = z$, $\dot{z} = u$, $\dot{u} = -\varphi_1(z) u - \varphi_2(z) - \varphi_3(y) - a_4 x$

derived from it by setting $y = \dot{x}$, $z = \ddot{x}$ and $u = \ddot{x}$. The whole idea of the proof of the theorem is to show that W_0 is a Lyapunov function for the system (3.1). In fact, we shall verify that

LEMMA 1. Subject to the conditions of Theorem 1:

(i) W_0 (0,0,0,0) = 0 and there exist constants D_i , i=1, 2, 3, 4 such that

(3.2)
$$W_0 \ge D_1 x^2 + D_2 y^2 + D_3 z^2 + D_4 u^2$$

for all x, y, z and u;

(ii) the derivative $\dot{W}_0 \equiv \dot{W}_0(x(t), y(t), z(t), u(t))$ corresponding to any solution (x(t), y(t), z(t), u(t)) of (3.1) satisfies

(3.3)
$$\dot{W}_0 \le -D_5 (y^2 + z^2 + u^2)$$

for some constant D_5 .

The usual Barbašin-type argument applied to (3.2) and (3.3) would then show that, for any solution (x(t), y(t), z(t), u(t)) of (3.1),

$$x\left(t\right)\to0$$
, $y\left(t\right)\to0$, $z\left(t\right)\to0$, $u\left(t\right)\to0$ as $t\to\infty$, which is (1.6).

Proof of Lemma I. Since $\varphi_2(0) = 0$ and $\varphi_2(z)/z \ge a_2(z \neq 0)$, by (I.8), it is clear from (2.1) that

$$\begin{split} 2 \; \mathbf{W}_0 & \geq a_4 \; \mathbf{d}_2 \, x^2 + (a_2 \, \mathbf{d}_2 - a_4 \, \mathbf{d}_1) \, y^2 + 2 \int\limits_0^y \varphi_3 \left(\eta \right) \, \mathrm{d} \eta + 2 \int\limits_0^z \eta \varphi_1 \left(\eta \right) \, \mathrm{d} \eta \\ & + \left(a_2 \, \mathbf{d}_1 - \mathbf{d}_2 \right) z^2 + \mathbf{d}_1 \, u^2 + 2 \, a_4 \, xy + 2 \, a_4 \, \mathbf{d}_1 \, xz + \\ & + 2 \, \mathbf{d}_1 \, z \varphi_3 \left(y \right) + 2 \, \mathbf{d}_2 \, yu + 2 \, zu + 2 \, \mathbf{d}_2 \, y \int\limits_0^z \varphi_1 \left(\eta \right) \, \mathrm{d} \eta \\ & \equiv 2 \; \dot{\mathbf{W}}_0^*. \end{split}$$

The function W_0^* is the same as the function V(3.1) of [1] except that here we have φ_1 , φ_3 in place of f and g respectively and u in place of w. It will be seen from the various estimates arising in the course of the proof of [1; Lemma 1] that if ε is fixed by (1.10) then W_0^* , and hence W_0 , satisfies (3.2).

Turning now to (3.3), let (x(t), y(t), z(t), u(t)) be any solution of (3.1). By a straightforward differentiation from (2.1) we have that

$$\dot{W}_0 = -U_1 - U_2 - U_3 - U_4$$

where

$$\begin{aligned} & \mathbf{U}_{1} = \mathbf{d}_{2} \; y \varphi_{3} \left(y \right) - a_{4} \; y^{2} & , & \mathbf{U}_{2} = \left\{ \left. a_{2} - \mathbf{d}_{1} \; \varphi_{3}^{'} \left(y \right) \right\} z^{2} - \mathbf{d}_{2} \; z \int_{0}^{z} \varphi_{1} \left(\eta \right) \, \mathrm{d} \eta \, , \\ & \mathbf{U}_{3} = \left(\mathbf{d}_{1} \; \varphi_{1} \left(z \right) - \mathbf{I} \right) \, u^{2} & , & \mathbf{U}_{4} = z \varphi_{2} \left(z \right) - a_{2} \, z^{2} + \mathbf{d}_{2} \left(y \varphi_{2} \left(z \right) - a_{2} \; y z \right) . \end{aligned}$$

By reasoning as in the proof of [1; Lemma 2], it can be shown from (1.2), (1.3) and (1.10) that

(3.6)
$$U_1 \ge a_3 \, \epsilon y^2$$
, $U_2 \ge \frac{1}{2} \, (\Delta_0/a_1 \, a_3) \, z^2$, $U_3 \ge a_1 \, \epsilon u^2$.

Concerning the term U_4 , note that if $z \neq 0$,

$$\begin{aligned} \mathbf{U_4} &= (\varphi_2(z)/z - a_2) (z^2 + \mathbf{d_2} yz) \\ \geq &- (\varphi_2(z)/z - a_2) \frac{\mathbf{d_2^2}}{4} y^2 \end{aligned}$$

by (1.9). Since $U_4 = 0$ when z = 0, U_4 satisfies

(3.7)
$$U_{4} \ge -(\varphi_{2}(z)/z - a_{2}) \frac{d_{2}^{2}}{4} y^{2}$$

always. But by (2.2) and (1.9),

$$\frac{1}{4} d_2^2 \left(\varphi_2 \left(z \right) / z - a_2 \right) < \varepsilon_0 a_3;$$

therefore

$$(3.8) U_1 + U_4 \ge (\varepsilon - \varepsilon_0) a_3 y^2.$$

On combining (3.8) and the estimates for U_2 and U_3 in (3.6) with (3.4), we get

$$\dot{W}_0 \leq -(\varepsilon - \varepsilon_0) a_3 y^2 - \frac{1}{2} (\Delta_0/a_1 a_3) z^2 - \varepsilon a_1 u^2$$

which verifies (3.3). Theorem I now follows as was pointed out.

4. Proof of Theorem 2

Here also we consider the differential system

(4.1)
$$\dot{x} = y$$
, $\dot{y} = z$, $\dot{z} = u$,
 $\dot{u} = -\varphi_1(z) u - \varphi_2(z) - \varphi_3(y) - a_A x + b(t, x, y, z, u)$,

which is derived from (1.7) on setting $y = \dot{x}$, $z = \ddot{x}$ and $u = \ddot{x}$. Our procedure is the same as in the proof of the analogous result [2; Theorem 1], and we shall prove here that

Lemma 2. Assume that the conditions of Theorem 2 hold. Let $W_1=W_1\left(x\,,u\right)$ be the continuous function defined by

(4.2)
$$W_1 = \begin{cases} x \operatorname{sgn} u, & \text{if } |u| \ge |x| \\ u \operatorname{sgn} x, & \text{if } |u| \le |x| \end{cases}$$

and set

$$(4.3) W = W_0 + W_1,$$

where Wo is the function (2.1). Then

(4.4)
$$W(x, y, z, u) \to +\infty$$
 as $x^2 + y^2 + z^2 + u^2 \to \infty$,

and the limit

$$\dot{\mathbf{W}}^{+} = \underset{h \to +0}{\text{Lim sup}} \left\{ \mathbf{W} \left(t + h \right), \, y \left(t + h \right), \, z \left(t + h \right), \, u \left(t + h \right) - \right.$$
$$\left. - \mathbf{W} \left(x \left(t \right), \, y \left(t \right), z \left(t \right), \, u \left(t \right) \right) \right\} / h$$

exists, corresponding to any solution (x(t), y(t), z(t), u(t)) of (4.1), and satisfies

(4.5)
$$\dot{W}^{+} \leq -D_{5}$$
 provided $x^{2}(t) + y^{2}(t) + z^{2}(t) + u^{2}(t) \geq D_{6}$

for some constants D5, D6.

As shown in [2; § 4], the two results (4.4) and (4.5) imply that

$$x^{2}(t) + y^{2}(t) + z^{2}(t) + u^{2}(t) \le D$$
, $t \ge t_{0}$ (o $< t_{0} < \infty$),

which is precisely (1.12).

Proof of Lemma 2. Clearly, from (4.2),

$$|W_1| \leq |u|$$

for all x and u, so that by (4.3) and (3.2)

$$W \ge D_1 x^2 + D_2 y^2 + D_3 z^2 + D_4 u^2 - |u|$$

from which (4.4) follows.

Next we verify (4.5). Let (x(t), y(t), z(t), u(t)) be any solution of (4.1). Then

$$\dot{\mathbf{W}}_{1}^{+} = \mathop{\mathrm{Lim}}_{h \to +0} \sup \left\{ \mathbf{W}_{1} \left(x \left(t+h \right), u \left(t+h \right) \right) - \mathbf{W}_{1} \left(x \left(t \right), u \left(t \right) \right) \right\} / h,$$

and a straightforward calculation from (4.2) and (4.1) gives that

$$\dot{\mathbf{W}}_{1}^{+} = \left\{ \begin{array}{ll} \mathbf{y} \ \mathrm{sgn} \ \mathbf{u} \,, & \mathrm{if} \quad | \ \mathbf{u} \ | \geq | \ \mathbf{x} \ | \\ - \left(\mathbf{\phi}_{1} \left(\mathbf{z} \right) \ \mathbf{u} \,+\, \mathbf{\phi}_{2} \left(\mathbf{z} \right) \,+\, \mathbf{\phi}_{3} \left(\mathbf{y} \right) \,+\, \mathbf{a}_{4} \,\mathbf{x} \,-\, \mathbf{p} \right) \,\mathrm{sgn} \,\mathbf{x} \,, & \mathrm{if} \quad | \ \mathbf{u} \ | \leq | \ \mathbf{x} \ | \end{array} \right\} \cdot$$

Thus, by (1.9) and (1.11),

$$(4.6) \quad \dot{W}_{1}^{+} \leq \begin{cases} |y|, & \text{if } |u| \geq |x| \\ -a_{4}|x| + |\varphi_{3}(y)| + D_{7}(1+|z|+|u|), & \text{if } |u| \leq |x| \end{cases},$$

where in obtaining (4.6) we also used the fact, arising from (1.3), that $\varphi_1(z) < a_2 a_3 a_4^{-1}$ for all z.

Observe now from (2.1) and (4.1) that

$$\dot{W}_{0} = -U_{1} - U_{2} - U_{3} - U_{4} + (d_{2} y + z + d_{1} u) p(t, x, y, z, u)$$

U₁, U₂, U₃ and U₄ being as given in (3.5); therefore, by (1.11),

$$\dot{W}_0 \le -U_1 - U_2 - U_3 - U_4 + D_8 (|y| + |z| + |u|)$$

where $D_8 = max (1, d_1, d_2) A$. From this, (3.6) and (4.6) it is clear that $\dot{W}^+ = \dot{W}_0 + \dot{W}_1^+$ necessarily satisfies

(4.7)
$$\dot{W}^{+} \leq -U_{1} - U_{4} - \frac{1}{2} (\Delta_{0}/a_{1} a_{3}) z^{2} - a_{1} \varepsilon u^{2} + D_{9} (|y| + |z| + |u|)$$

if $|u| \ge |x|$, or

$$\begin{aligned} \dot{\mathbf{W}}^{+} &\leq -\left(\mathbf{U}_{1} - \left| \varphi_{3} \left(\mathbf{y} \right) \right| \right) - \mathbf{U}_{4} - \frac{\mathbf{I}}{2} \left(\Delta_{0} / a_{1} \, a_{3} \right) z^{2} - a_{1} \, \varepsilon u^{2} - a_{4} \, \left| \mathbf{x} \right| \\ &+ \mathbf{D}_{10} \left(\mathbf{I} + \left| \mathbf{y} \right| + \left| \mathbf{z} \right| + \left| \mathbf{u} \right| \right) \end{aligned}$$

if $|u| \leq |x|$.

First we show that there is a constant D₁₁ such that

(4.9)
$$\dot{W}^{+} \le -1$$
 whenever $y^{2} + z^{2} + u^{2} \ge D_{11}^{2}$.

Indeed let $|y| > d_2^{-1}$. Then, by (3.5), (1.2) and (2.2)

$$\begin{aligned} \mathbf{U}_{1} - | \varphi_{3} (y) | &= (\mathbf{d}_{2} | y | - \mathbf{I}) | \varphi_{3} (y) | - a_{4} y^{2} \\ &\geq a_{3} \varepsilon y^{2} - a_{3} | y |, \end{aligned}$$

so that, as in the verification of (3.8),

$$(U_1 - |\varphi_3(y)|) + U_4 \ge (\varepsilon - \varepsilon_0) a_3 y^2 - a_3 |y|.$$

On using this in (4.8) and noting that $U_1 + U_4$ in (4.7) satisfies (3.8), it will be clear from (4.7) and (4.8) that \dot{W}^+ , at least, satisfies

$$\dot{W}^{+} \leq -D_{12} y^{2} + D(|y| + 1)$$

for some constant D_{12} if $|y| > d_2^{-1}$. Thus, provided $|y| > d_2^{-1}$ is large enough, $|y| > D_{13}$ say,

(4.10)
$$\dot{W}^{+} \le -1 \quad \text{if} \quad |y| \ge D_{13} \ (> d_{2}^{-1}).$$

If, however, $|y| \le d_2^{-1}$ it will be seen from (4.7), (4.8), (3.6) and (3.7) that

$$\dot{\mathbf{W}}^{+} \leq -\frac{\mathbf{I}}{2} \left(\Delta_0 / a_1 \, a_3 \right) z^2 - a_1 \, \varepsilon u^2 + \mathbf{D} \left(\left| z \right| + \left| u \right| + \mathbf{I} \right),$$

from which it follows that $\dot{W}^+ \le -1$ when $|y| \le d_2^{-1}$ provided $z^2 + u^2$ is large enough, say $z^2 + u^2 \ge D_{14}$. In other words,

(4.11)
$$\dot{W}^+ \le -1$$
 if $y^2 + z^2 + u^2 \ge D_{12}^2 + D_{14}^2$,

which is (4.9) with $D_{11}^2 = D_{13}^2 + D_{14}^2$.

Next, we verify that the estimate (4.11) still holds when $y^2 + z^2 + u^2 \le D_{11}^2$ provided that |x| is large enough. Assume here, to start with, that $|x| \ge D_{11}$. Then $|x| \ge |u|$ so that \dot{W}^+ satisfies (4.8). Since $y^2 + z^2 + u^2 \le D_{11}$, it is clear here that

$$\dot{W}^{+} \le -a_4 |x| + D_{15}$$
 ≤ -1

provided $|x| \ge D_{11}$ is sufficiently large, say $|x| \ge D_{16}$ ($\ge D_{11}$). Thus

(4.12)
$$\dot{W}^+ \le -1$$
 if $y^2 + z^2 + u^2 \le D_{11}^2$ but $|x| \ge D_{16}$.

The result (4.12) combined with (4.11) clearly show that

$$\dot{W}^+ \le -1$$
 if $x^2 + y^2 + z^2 + u^2 \ge D_{16}^2 + D_{11}^2$,

which verifies (4.5).

Theorem 2 now follows as was pointed out.

5. A GENERALIZATION OF THEOREM 2

There is no difficulty in extending Theorem 2 to an equation (1.7) in which p satisfies

(5.1)
$$|p(t, x, y, z, u)| \le A + B(y^2 + z^2 + u^2)^{1/2}$$

with A>0 and B>0 constants and B sufficiently small. Indeed the use of (5.1) instead of the condition (1.11) of Theorem 2 does not affect the work in § 4 appreciably. The main adjustments would occur in the two estimates (4.7) and (4.8) of \dot{W}^+ , each of which will now have to be augmented by a term not exceeding $BD_{17} (y^2 + z^2 + u^2)^{1/2}$, $D_{17} = 3^{1/2} \max{(1, d_1, d_2)}$. However, if B is fixed such that

$$B < \min \left[\frac{a_3 \, \epsilon}{2 \, D_{17}} \, , \frac{\Delta_0}{4 \, a_1 \, a_3 \, D_{17}} \, , \frac{a_1 \, \epsilon}{2 \, D_{17}} \right],$$

it will be seen, by using the arguments of \S 4, that the two estimates (4.9) and (4.12) for \dot{W}^+ still hold valid under the condition (5.1).

REFERENCES

- [1] J. O. C. EZEILO, « J. Math. Anal. Appl. », 5 (1) (1962).
- [2] H. O. TEJUMOLA, «Ann. Mat. Pura Appl. », (IV) 80, 177-196 (1968).