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Equazioni differenziali. — Further results on the Boundedness
and the Stability of certain fourth order differemtial equations. Nota
di H. O. TejumoLa, presentata ® dal Socio G. SANSONE.

RIASSUNTO. — Si dimostrano due Teoremi sulla limitatezza e stabilithy delle soluzioni
di una classe di equazioni differenziali non lineari del quarto ordine.

1. INTRODUCTION

Consider the fourth order differential equation
(1.1) A+ (F)X +ag ¥ @3 (%) fagx=p (¢, %,%, %)

in which a3 >0, @, > 0 are constants and the functions ¢, , g3 and p which
depend only on the arguments displayed are such that e, (&), 9, (3,
p(#,x,y,2,u) are continuous for all x,y,2,% and £ In the case p=o0
in (1.1), Ezeilo [1] showed that if ¢3(0) = 0 and there are constants
a; > 0,as >0 such that

(12)  ¢3(fy=a3(y=0) and ¢ (5)=a  for all ¢

(1.3) {a1a,— 9, (1)} as— a1 a4 0, (2) = A, (arbitrary y and 2)
for some constant A, > o,

(1.4) P () — 9 Ny < 81 (v 50),

where 3; is a constant such that 8, <2 A, a,arl az?,

2z

(1.5) z-lfcpl () ds — @y () < 8 (s 4 0),

0

where 8, is a constant such that 3, < 2 A, a2 a;l, then every solution x (¢)
of (1.1) satisfies

(1.6) x(@)—>o, #({)—>o, @ —>0, F@)—>o0 as #-»oo0.

The conditions (1.2) and (1.3) together with ¢;,>o0, i=1,2, 3,4 are
suitable generalizations of the Routh-Hurwitz conditions

;>0 (Z.=I’293’4>7 (alaZ_a3>a3_d%a4>o

(*) Nella seduta dell’t1 dicembre 1971.
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for the asymptotic stability (in the large) of the trivial solution of the linear
equation

2+ ¥ +a X+ az3i +agx = o.

For the general case p == 0, the present author [2] showed that if, in
addition to the above conditions, p is a bounded function, then every
solution of (1.1) is ultimately bounded.

The main object of the present note is to extend these results to
equations of the form

(7)) oI F+o(E)+ @) tar=p0¢,x,%,%,%)

of which (1.1) is a special case corresponding to ¢, (%) linear in (1.7). We
shall prove here

THEOREM 1. Suppose, given the equation
(1.8) 2D+ 91 (F) X + @p (£) + 93 () + 242 = 0,

that

(D) #2(0) = 0= 93(0),
(ii) there are constants ay >0, ay >0, a3 >0 such that each of (1.2),
(1.3), (1.4), (1.5) and the following hold:

(1.9) 0 < (9, (9)[z — ay) < &, alfal (4= 0),

where €y is a positive constant such that

(I.IO) G <e< _ai’ Ay a (ZAO ——82), as <2a4A0___81)]’

)
as ’ arazl; ' 47, af a, 4agy a tlg

Ai=a,a, +a,a,a;'. Then every solution x (f) of (1.8) satisfies (1.6).

For the case p % o, we shall prove "

THEOREM 2. Let hypotheses (i) and (ii) of Theorem 1 hold and suppose
Jurther that

(1.11) lp ¢, x,y,2,0)| <A<oo

Jor all values of t,x,y,z and w. Then there exists a finite constant
D > o whose magnitude depends only on 1, P2 and Q3 as well as on
a1,ay,a3,a4,81,8, Ny and A such that every solution x (£) of (1.7) satisfies

(1.12) [#(|<D, |#@®|<D, |#@|<D, |¥@®|<D

Sor all t >ty (0 < 2y < o0).
A generalization of the Theorem will be given in § 5.

2. — RENDICONTI 1972, Vol. LII, fasc. 1.
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2. SOME PRELIMINARIES

A function Wy (x, y,2,n). The main tool in the proofs of Theorems 1
and 2 is the differentiable function Wy = Wy (x,, 2, %) defined by

z

(2.1)  2Wy=a4dy2?+ (apdy—ayd;) 32+ 2 f@a(n) dn+2fvz<91(n) dn
0

0

2 [(dios ) —dandn + it + 2 0y + 2 a0y
0

+ 2d; 293 (¥) +2dzy%+2zu+2dzy{cpl(n)dn
b

where
(2.2) di=c+al! , dy=c+aq,
e > 0 being the constant in (1.10).

Notations. In what follows the capitals D, Dy, D1,--- denote finite
positive constants whose magnitudes depend only on the functions ¢y, @5, @3
and p as well as on the constants a;, @y, a3, a4,8;,935,Ag, g, and ¢, but
are independent of solutions of whatever differential equation under consider-
ation. The D,’s, z=10,1, 2 retain a fixed identity throughout, but the
D’s without suffixes attached are not necessarily the same each time they
occur.

3. PROOF OF THEOREM 1

The procedure here is the same as in [1] and we shall only sketch the
outline. Consider, instead of (1.8), the equivalent system

3.1) iE=y, y=z2, f=u, b=—0¢ (B)u—y(8) —p3(¥) —ayx

derived from it by setting ¥ = #, 2 = % and # =Xx. The whole idea of the
proof of the theorem is to show that W, is a Lyapunov function for the
system (3.1). In fact, we shall verify that

LEMMA 1. Swubject to the conditions of Theorem 1:

(i) Wy (0,0,0,0) =0 and there exist constants D;, i =1,2,3,4
such that

(3.2) Wo>D; a2 4 Dy g2 + Dy 4 Dy 22
for all x,y,z and u,

(i) the derivative Wy =Wy (x (), (@), 2 ({),u () corresponding to
any solution (x (¢),y (), 2 (), un (?) of (3.1) satisfies

(3-3) Wo < —D;5 (52 + 22 + )

for some constant Dy.
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The usual Barbasin-type argument applied to (3.2) and (3.3) would then
show that, for any solution (x (), (), 2 (), u (¢)) of (3.1),

x(@#)—>o0, y@®—o, 2z =0, u({)—o as #—» oo,
which is (1.6).

Proof of Lemma 1. Since @, (0) = 0 and @, (2)/z > a5 (2 == 0), by (1.8),
it is clear from (2.1) that

2

¥y
2 Wo 2 aydy® o (@0 da—and 322 [ qu () dn+2 gy () 0
0 0
+ (agdy—de) 22 +dy w2+ 2 a4 2y + 2 ay dy %2 +
%—zdlm%<y)+—2dzy%—F2$%4-2dzyf@1@)dn

0
%%
EZW().

The function Wy is the same as the function V (3.1) of [1] except that here
we have ¢, , g3 in place of f and g respectively and # in place of w. It
will be seen from the various estimates arising in the course of the proof
of [1; Lemma 1] that if ¢ is fixed by (1.10) then W, and hence Wy, satis-
fies (3.2).

Turning now to (3.3), let (x (¥),¥ (¥),2 (), » () be any solution of
(3.1). By a straightforward differentiation from (2.1) we have that

(3.4) Wo=——U1—~U2—U3—U4

where

z

Uy = dy 305 (3) —ag * U2={“2—d1@§<y)}32*d23f@1(7))d“’),
0
U3=<d1@1<3)—1)%2 , U4=Z<P2(3)‘—4232+d2(3’<?2(@"‘“2)’@-

(3-5)

By reasoning as in the proof of [1; Lemma 2], it can be shown from (1.2),
(1.3) and (1.10) that

(3.6) Uizae? , Ua=— (Dgfayag) 2, Uy a; enl.

Concerning the term Us, note that if z==o,
Uy = (92 (9)[z — ap) (% + dy 32)

>— (@)l —a) L5

by (1.9). Sirice Uy = 0 when # = o , Uyg satisfies

.(3-7) U42_<(P2 (3)/3_42)%%y2
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always. But by (2.2) and (1.9),

% GH (P2 (®)]z — ag) < g ag;
therefore

(3-8) Ui + Uy = (e —gg) a3 42

On combining (3.8) and the estimates for Uz and Us in (3.6) with (3.4),
we get

Wo < — (e —eg) 23 52 — % (Do/ay ag) 22 — ca, u?,

which verifies (3.3). Theorem 1 now follows as was pointed out.

4. PROOF OoF THEOREM 2

Here also we consider the differential system

(4.1) r=y, y=z, E=u,

u = '—CP1<3)%—<P2<3)—(P3(3’)—“495 +p<t’x»y’3’%>r
which is derived from (1.7) on setting ¥ = %, # =% and # = *. Our pro-
cedure is the same as in the proof of the analogous result [2; Theorem 1],
and we shall prove here that :

LEMMA 2. Assume that the conditions of Theorem 2 hold. Let
Wi = Wi (x, u) be the continuous function defined by

xsgnu, if |u|>|x]|

(4-2) W=y sgnx, if Jul<|x|)
and set
(4.3> W=WO+W1»

where Wo is the function (2.1). Then

(4.4) W,y,2,u4) >+ oo as 22 + 92 4 22 4+ 42 > oo,

and the limit
v'v*:Ligigp{vv(t+;z),y<x+/z),z(z+/z),u(z+ﬁ)_

W@,y @), 2@, u @)}

exists, corvesponding to any solution (x(£),y (¢),z(t),u () of (4.1), and
satisfies

(4-5) W< —Ds  provided x2(f) + 2 (¢) + 22 () + 2 (/) > Ds

Jor some constants Ds , Dg.
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As shown in [2; § 4], the two results (4.4) and (4.5) imply that
2O+rO+20)+2@H<D, t>1 (0<ty<oo),
which is precisely (1.12).
Proof of Lemma 2. Clearly, from (4.2),
|Wh| < |u]
for all x and #, so that by (4.3) and (3.2)
W>Di14% + D2y? + D32z® + Dao? — |u],

from which (4.4) follows.
Next we verify (4.5). Let (x (¥),y (), 2 (), (¢)) be any solution of
(4.1). Then

W = Lim sup (Wi (x (¢ + ), (¢ + ) — Wa e (0, w ()},

and a straightforward calculation from (4.2) and (4.1) gives that
ysgnu, i |u|=|x| | |

— (@@ u+ 9208 +o3(¥) +axr—p)sgnx, if |u|<|x]

Thus, by (1.9) and (1.11),

Iyl i Ju| =|x|

—ag| x|+ o3 N +Dr (1 |2 +]u]), if |u|<|x]

Wi =

(4.6) Wi <

b

where in obtaining (4.6) we also used the fact, arising from (1.3), that
0y (2) < agaga;" for all 2.
Observe now from (2.1) and (4.1) that

Woz——,Ul——Uz——Ua—U4—l—(dzy+z+d1u)p(z‘,x,y,z,u)
Ui, Uz, Us and Uy being as given in (3.35); therefore, by (1.11),
WOS—U1—~U2——U3—U4—|—D8(D/| + 2| + |#]|)

where Dg = max (1,d1,ds) A. From this, (3.6) and (4.6) it is clear that
Wt = Wo + Wy necessarily satisfies

@7 W'<—U—Ui— — (Dgfayag) 22— ay e + Dy (| 9| + |2] + | #|)
if |u|>|x], or
s W< — (Ur— |03 (0)]) — Us— - (Agfay a5) 22— ay e — a4 | x|

+ Dio (1 + | 2| + [2] + |u])

if Ju|<|x|.
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First we show that there is a constant Dy such that
(4.9) W*< —1 whenever P+ 2+ 42 >D.
Indeed let |y| >d;*. Then, by (3.5), (1.2) and (2.2)

Ui —[es W] = (da|y| — )] 93 (5)| — a4 5?
>a3eyt—ag|y|,
so that, as in the verification of (3.8),
Ui—[es ) +Us=(e—=e0) a3 32— a3 | ¥|.

On using this in (4.8) and noting that U; 4+ Uy in (4.7) satisfies (3.8), it will
be clear from (4.7) and (4.8) that W™, at least, satisfies

W < — Dya 2 +D(ly|+ 1

for some constant Dip if |y|>d; ! Thus, provided |y|>dy !is large
enough, |y| > Dis say,

(4.10) Wr<—1  if |y|>Dis(>dih.

If, however, |y| < d;yt it Wﬂl be seen from (4.7), (4.8), (3.6) and (3.7) that
Wt < ———;—(Ao/ala;;)zz—alsuz—l— D (|z| + |#]| + 1),

from which it follows that W¥ < —1 when |y| < d;' provided 2%+ #2 is

large enough, say 22+ 22> Du. In other words,

(4.11) Wr<—1  if y*+ 2+ 4®>D% + D,

which is (4.9) with D% = D% + D%,.

Next, we verify that the estimate (4.11) still holds when y*+2*+ #* < D%
provided that |#| is large enough. Assume here, to start with, that |+|>Dx.
Then |x|>|%| so that W satisfies (4.8). Since 2 + 22 + 22 < Dyy, it is
clear here that

W< —a,|x| + Dys
=—1I,
provided |x| > Du is sufficiently large, say |x|>= D (= Du). Thus.
(4.12) Wr<—1  if 4+ +42<DY but |x|>Dis.
The result (4.12) combined with (4.11) clearly show that
Wr<—1  if 245" 4 4 ' = Dfs + Diy,

which verifies (4.5).
Theorem 2 now follows as was pointed out.
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5. A GENERALIZATION OF THEOREM 2

There is no difficulty in extending Theorem 2 to an equation (1.7) in
which p satisfies

(5.1) |p(t,x,9,2,w)| <A+ B2+ 2+ )"

with A >0 and B > o constants and B sufficiently small. Indeed the use
of (5.1) instead of the condition (1.11) of Theorem 2 does not affect the
work in § 4 appreciably. The main adjustments would occur in the two esti-
mates (4.7) and (4.8) of W, each of which will now have to be augmented
by a term not exceeding BD17 (32 + 22 + 22" Dy; = 32 max (1,d1,ds).
However, if B is fixed such that

as e Ao a €

B < min
2D17 ' 4a@1a3Dyp ’ 2Dyq |’

it will be seen, by using the arguments of § 4, that the two estimates (4.9)
and (4.12) for W* still hold valid under the condition (5.1).
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