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Fisica matematica. — Action principles for electromagnetism.
Nota di Carro Morost @, presentata ® dal Socio B. Finzi.

RIASSUNTO. — La presente Nota riguarda un principio di azione per il campo elettro-
magnetico che differisce da quello usuale per il fatto che il potenziale elettromagnetico, in
corrispondenza al quale il funzionale di azione & stazionario, coincide con la soluzione del-
Pequazione delle onde soddisfacente sia le condizioni al contorno che tutte quelle Zniziali
assegnate.

Infatti il funzionale d’azione classico & stazionario in corrispondenza ad un potenziale
il quale soddisfa si I’equazione delle onde e le condizioni al contorno, ma non tutte le condi-
zioni iniziali date. Il progresso che si realizza con il presente metodo & possibile per 'uso di
una forma bilineare convolutiva, che rende simmetrico 'operatore di campo. Come conse-
guenza di tale simmetria, si ottiene un teorema di reciprocitd valido per campi variabili nel
tempo, che contiene come caso particolare il teorema di reciprocita di Lorentz.

I. INTRODUCTION

The possibility of a variational formulation for linear initial value pro-
blems, discovered by Gurtin [1], has been recently discussed in detail by
Tonti [2], who put in evidence the importance of a convolution bilinear form
for the existence of such a variational formulation. In particular, using a
convolution bilinear form, one can give a variational formulation for linear
initial value problems in a way that greatly simplifies the Gurtin method [3]-
The purpose of this paper is to apply the convolution bilinear form to the
variational formulation of the boundary-initial value problem of the electro-
magnetic field. An analysis of the operator features of this problem is made,
and a variational formulation is given, simpler than the one obtained with
the Gurtin method [4]. Referring to quoted papers, and particularly to
paper [2], for more details, in the next section we summarize the main
characteristics of this procedure.

2. — VARIATIONAL FORMULATION FOR INITIAL-VALUE PROBLEMS

A fundamental theorem in the calculus of variations states that in order
that the Zimear problem M

(e.1) Lo =f

admits a variational formulation the operator of the problem must be
symmetric.

{*) Istituto di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32,
20133 Milano.

(*¥*) Nella seduta dell’11 dicembre 1971.

(1) By this word we mean the set of the equation and of the initial and boundary
conditions.
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If the operator is non-linear, the corresponding necessary condition is
that the Gateaux derivative of the operator be symmetric [5, pag. 56] @.
In the general case the functional that corresponds to the equation of the
problem is

1
(22) NM=FWM+IW—MMM%+X@—%»&Hﬂﬁ@
0

where %, is any function that belongs to the domain D (L) [s, pag. 58]. In
the case of linear operators, the functional (2.2) becomes

(2.3) Flu] = — (e, Loy — (f, 4).
As an example, let us consider the simplest initial value problem
(c4) Su@=f@; u@© =o0; 0<t=T; wu()eClo,T].

The operator of this problem will be denoted by L while the formal
differential operator d/d# will be denoted by £ ®. The operator L is #ot
symmetric with the usual bilinear form

(2.5) (u , vy = f%(f)ﬂ(t) ds

0

but it is symmetric with the convolution bilinear form

T

(2.6) (u,v},:fu(T———t)v(t) dz.

0

Then with the usual bilinear form we cannot have a variational formu-
lation for initial-value problems, while using the convolution bilinear form
that becomes possible.

If the problem is given by two sets of equations

(2.7) Nu=f ; Mv=Cu

(2) We remember that the condition of symmetry of the Gateaux derivative of the
operator becotnes also sufficient if the domain of the operator is simply connected [5, pag. 32].

(3) Here and in the following we use capital Italic letters for the formal operator £ and
capital letters for the operator L. To the domain D (L) of the operator belong space-time
functions (with a specified functional class) that satisfy the boundary and initial conditions
of the particular problem we intend to study.
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(where N, M, C are linear, and C is also symmetric), we can write the
equations of the problem in matrix form

o] NI [2] f
2 31
that, putting
o) N v .
(2.8 a) L={M —c} ; w=l%} ; gZ{O
becomes
(2.9) Lw #g.

Remembering the condition stated above for the equation (2.1) we
have that the necessary and sufficient condition for being able to deduce (2.7)
from the stationarity of a functional F [« , %] is that the operator L of (2.9)
be symmetric, that is N and M must be one the adjoint of the other one:
N=DM. Its important to stress that the symmetry of the operator of the
problem (2.1). and the condition N = M for the problem (2.7) do not refer
to formal operators only but to complete operators [10]. Then from (2.3)
we obtain, using the bilinear form (2.6)

(2.10) Flu,o] = (v, Muy, — - (u,Cily,— @, f)..

3. — THE BOUNDARY-INITIAL VALUE PROBLEM FOR MAXWELL EQUATIONS

In every physical theory the variational principles rest upon a mathe-
matical structure of field equations, and therefore they can be constructed
in a rational way, testing their symmetry with respect to some bilinear form:
when the symmetry is assured, the functional is given by (2.2).

Now we shall examine the structure of the equations of the electromag-
netic field, and translate them into operator form. We consider two skew-
symmetric tensors F,g and F*® with cartesian components ¢

(3.1), =0 ; fM=—mD, ; MF="H,;
E m
Fop =0 ; F“:"—‘f— i Fu=—¢y,B

and two vectors J* and g,

‘(‘3.2) ]az(cp;T) cpa———(—zcg;—zf_\)).

(4) From now on, Greek indices take values 0,1, 2, 3 (20 = ¢#), Latin indices take
values 1,2, 3: letter x includes the set of ‘‘ spatial ” coordinates (x1, 22, x3). A pseudo-
euclidean metric with signature (1,—1,—1,— 1) is used, and Vg is the covariant deriva-
tive operator with respect to the coordinate xz* The tensor ¢,  is the Ricci tensor.
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With the introduction of the four-potential ¢, the two sets of Maxwell
equations can be written ® as

S Vo:fue ::Jﬁ

<33> 07 oz oz

(/@9 =0 i f“@a)| ey =0 ; mf @ a)|,cpn =0
where ; is the outer normal vector of the boundary 2 of tand X' UZ' =2,
and

S Fup = 5 [Vo @ — Vi g

(3-4) ? 0. (0:%) = o.

We can write phenomenological equations in vacuo in the following form ®)
(3-5) to fap = — Fog.

Then, from equations (3.3), (3.4), (3.5), one can show that the potential o,
is solution of the equation

(3.6) [£%9 g% V5 Vo — g% g™ V. V,] €5 = 2 g J°

where ¢*® is the metric tensor.

4. — MAXWELL EQUATIONS IN OPERATOR NOTATION

The problem (3.4) can be considered as describing a mapping between
two function spaces as follows. Let us consider a first function vector space ®
whose elements ¢ are the set of four space-time functions ¢* € C? (€2) and the
subset of this space formed by those elements that satisfy homogeneous initial
conditions given in (3.4): such a subset is a linear manifold. Next we consider
a second function space & whose elements F are the skew-symmetric tensors
F,e € C'(Q). Likewise we introduce two more function spaces: we shall denote
by 3 the first one, whose elements ] are the sets of four functions J* € C* (€),
and by ¢ the second space, whose elements f are the skew-symmetric tensors
fu €CH(Q). The problem (3.3) is a mapping between the two spaces d and ¢
given by the' linear differential operator N with a formal part defined by
the differential equation (3.3) and a domain defined by the functional class
specified above and by the conditions (3.3). The problem (3.4) is a mapping
between the two spaces @ and § given by the differential linear operator M
with formal part 91U defined by (3.4) and with domain D (M) given by the
linear manifold specified above.

(5) We cohsider the electromagnetic field in a bounded region TCR® or, with space-
time notation, in'a cylindrical region Q of V4. We assume here initial and boundary conditions
to be homogeneous, to work with a linear problem. An extension to the case of non-homo-
geneous conditions is easily done.

(6) Here and in the following we use the system [M.K.S.Q.]

raz.
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Problems (3.3) and (3.4) with the equation (3.5) can thus be put in
operator form

4.1) M =C2f ; Nf=] (f=CPF).

According to what we said in § 2 in order to give a variational formu-
lation to both problems we must verify whether N = M.

Now we consider the adjoint of the operator M corresponding to two
possible bilinear forms. First we try with the usual bilinear forms

(4.2) @ b= [[[[ o900 a0
!

4.3) ® 1) = [[[[ P i) 77 @01 ) a0
!

where Q is the region of V4 where we define the field functions. (See the
footnote ®). The function spaces ® and J are put in duality with the bilinear
form (4.2), and the same is for the spaces § and $: a natural request is that
the duality be separating (i.e. for every ¢ == 0, 6 being the null element of
the space, there must exist at least an element ¥ such that {9, ) == 0);
with this request if (¢, ¢) = o for every ¢, then must be ¥ = 6.

One can easily show that the duality between the function spaces @
and J is separating, and likewise for § and §, as f and F are defined
as skew-symmetric tensors.

- The adjoint operator M of the operator M is defined by the identity

(4.4) (> Mg) = (Mf, ¢)

for every ¢ € D (M) and fGD(1\7I) Even if the formal operator 9U is
the formal adjoint of 91T, D (M) ==D (N), on account of initial conditions:
therefore N:}:I\G/I So we can say that @ variational formulation of the
problems (4.1) with usual bilinear forms is not possible.

The customary trick introduced in field theory to overcome this difficulty
is to ignore one physical initial condition and to add an ‘‘ad hoc” unpiysical
final condition. So in our problem we obtain another operator M’ defined
by the same formal part 9T defined in (3.4) but with another condition on
the time variable

(4.5) P (0;x) =0 ; @X’;x)=o0

while we can eliminate the initial condition of the problem (3.3) thus obtaining
i <> B

a new operator N'.  Now, we have N'=M’ and, according to (2.10), we

deduce the new problem from the stationarity of the functional

(4.6) G/, 9] = (/M @) ——(f,C/) — (@, )
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The functional (4.6) is one of the various but equivalent forms of the
‘“ classical 7’ variational formulation (for example see [6], [7], [8, ch. 24]).
Now if we want to maintain our physically meaningful initial conditions,
we can overcome the difficulty stated above by introducing a new bilinear
form, precisely a convolution bilinear form defined as follows:

47) J, @ = f f f JXO =) 0 (%) dO

“-8) E, fy. = f f f f Flo (X0 — 25 %) 7 (2 ) dQ2.
Q

With the bilinear form (4.7), (4.8) one can verify that N =M and our
problems can be deduced from the stationarity of a functional, as we shall
see in the next sections.

5. — VARIATIONAL FORMULATION FOR THE WAVE PROBLEM

The fundamental problem of the electromagnetic field is to find the
electromagnetic potential given by a charge-current distribution. The electro-
magnetic potential ¢* is solution of the equation (3.6) with the initial
condition (3.4): in operator notation we have

(5.1) MCMe = J.
The operator MCM is symmetric as can be easily seen:
(5.2) &, MCMg), = (M, CMg), = (MCM¢, 9), .

Then from (2.3) the functional of the problem (5.1) is

(5-3) F[¢] = — (¢, MCMg), — (9, J).
that is
(5-32) E[‘”‘“iﬂf f (050X — 2% %) (877 0 (2 ) — £ 9y (22 2)) —

— " (Xo—xo;x)]a(xo;x)] dQ.

We stress the fact that the domain D (F) of the functional is exactly
the domain of the given problem.
From its variation and the properties of the convolution we have

(5-4) SF [¢] = (3¢ ,MCM¢ —J), ; ¢ €D (MCM)-
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from which, if we require that 3F = o the fundamental problem follows.
Then we can state the following

THEOREM 1:  The electromagnetic four-potential ¢, solution of the
boundary-initial value wave problem (5.1) makes stationary the functional
given by (5.3), and viceversa.

What about the minimum character of this functional?

Let us consider the functional (5.3): if we calculate its second variation
putting ¢ = @, + e (when ¢, is solution of the problem, and therefore
makes I stationary) we have

(5.5) $F =% (3,MCMg),

and we can easily verify that 8 F is not positive or negative definite. The
absence of minimum is not typical of the convolution bilinear form, and also
with the usual bilinear form we cannot speak of “ minimum '’ property of
the functionals, even if in the literature the minimum character of the func-
tional is sometimes stated.

6. — CANONICAL FORM OF THE VARIATIONAL THEOREM I

The boundary-initial value problem for the equations (3.3) and (3.4)
can be written in the following operator form (see § 4)

(6.1) Mf =] Mg = C1£

Therefore the functional of the problem is (see the functional (2.10))
(6-2) F[f, 9] =(f, Mo),— (o, ). — = (f,Cf).
that 'is

629 [[[[[72 00 =29 900 05 ) — s (=5 9 —
Q

— o (X" =25 ) JU (5 ) S g S (X0 — 25 %) £ (405 )] 2.

The elements f and ¢ of the domain D (F) of the functional (6.2) are the
eléments of the domains D(N) and D(M) respectively. Then we have the
following

THEOREM II: The electromagnetic four-potential o and the electromagnetic
Jreld tensor F°®, solutions of the boundary-initial value problems (3.3) and (3.4),
that 'zs of the Maxwell equations in canonical form, make stationary the
funa‘zonal (6.2), and viceversa.

Agam we stress the fact that no final condition on the field functions ¢*
and f is needed.
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7. — RECIPROCITY THEOREM

On account of the symmetry of the operator of the wave problem, we
can easily deduce a formulation of the reciprocity Theorem; let us consider
two different charge distributions J;, J,: be ¢; and ¢, the corresponding
potentials.

From the symmetry of MCM we obtain

(7.1 Jir 9. = <1\7ICM<P1 y P2y = (P1, MCM(PZ>: = (91, J2).

that is

(7.2) Hﬂjm(x"—x";@ cp;<x°;x>dg_=_ﬂffcpi‘(x°—x°;x) Joa (2 %) Q.
Q Q

We stress the fact that this formulation depends only upon the sym-
metry of the operator MCM.

We consider three particular cases, the electrostatic field, the magne-
tostatic field and the electromagnetic stationary field.. In the first case, we
have from (7.1), (3.1) and (3.2)

(7.3 [[[ex® @iyav = [[[ @) @umy av
A\ v

that gives the electrostatic formulation of the reciprocity Theorem. Likewise
we obtain the magnetostatic formulation of this Theorem, given by:

(7.4) [[[ T Kipyav = | [[Ti®-E @ av.
A\ A%

Now let us consider a stationary electromagnetic field, that is we suppose
that ¢ = ¢-exp (f0f) and ] =T -exp (¢wf): then from (7.2) we have

(7.5) f f [F2 (B)- @y (P) — T+ A, (P)] dV =

= [ f [61 (P) 5 () —T, (P)- A, (P)] dV.

If we remember that for stationary fields and charges distributions the
continuity equation (that is a necessary condition of the wave equation)
begins

(7.6) div?—l— iwp =0

and that the electric field ‘is

rr*w

(7.7) — [grad & + mA]
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from (7.5) we have, on account of the divergence Theorem and boundary
conditions:

(7.8) ﬂ .- dV._fff I, By dv

¥

that is the Lorentz reciprocity Theorem for stationary fields. The various
formulations of the reciprocity Theorem (see ref. [8, ch. 3] and [9, ch. 10])
are thus derivable from the properties of structure of the operator MCM and
are all particular cases of the general reciprocity Theorem given by (7.2).

8. — CONCLUSION

The paper deals with a variational formulation of the complete boundary-
initial value problem of electromagnetism.

Contrary to the usual practice, initial value conditions are taken into
account without recourse to artful final conditions. This is possible by using
a convolution bilinear form that makes the field operator symmetric: moreover,
as a consequence of such symmetry, a reciprocity Theorem valid for time-
varying electromagnetic fields is obtained, that contains the Lorentz recipro-
city Theorem as a particular case.
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