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Fisica m atem atica. —  Action principles fo r  electromagnetism. 
Nota di C a r l o  M o r o s i  n , presentata ((*) **> dal Socio B. F i n z i .

Riassunto. —■ La presente Nota riguarda un principio di azione per il campo elettro- 
magnetico che differisce da quello usuale per il fatto che il potenziale elettromagnetico, in 
corrispondenza al quale il funzionale di azione è stazionario, coincide con la soluzione del
l’equazione delle onde soddisfacente sia le condizioni al contorno che tutte quelle iniziali 
assegnate.

Infatti il funzionale d’azione classico è stazionario in corrispondenza ad un potenziale 
il quale soddisfa sì l’equazione delle onde e le condizioni al contorno, ma non tutte le condi
zioni iniziali date. Il progresso che si realizza con il presente metodo è possibile per l’uso di 
una forma bilineare convolutiva, che rende simmetrico l’operatore di campo. Come conse
guenza di tale simmetria, si ottiene un teorema di reciprocità valido per campi variabili nel 
tempo, che contiene come caso particolare il teorema di reciprocità di Lorentz.

i . I n t r o d u c t io n

T he possibility of a variational form ulation for linear in itial value p ro 
blems, discovered by G urtin  [ i] , has been recently  discussed in detail by 
T onti [2], who pu t in evidence the im portance of a convolution bilinear form 
for the existence of such a variational form ulation. In  particu lar, using a 
convolution bilinear form, one can give a variational form ulation for linear 
initial value problem s in a w ay th a t g reatly  simplifies the G urtin  m ethod [3]. 
T he purpose of this paper is to apply  the convolution bilinear form  to the 
variational form ulation of the boundary-in itial value problem  of the electro
m agnetic field. A n analysis of the operator features of this problem  is m ade, 
and a variational form ulation is given, sim pler than  the one obtained w ith 
the G urtin  m ethod [4]. R eferring to quoted papers, and particu larly  to 
paper [2], for m ore details, in the next section we sum m arize the m ain 
characteristics of this procedure.

2. -  V a r ia t io n a l  f o r m u l a t io n  fo r  i n i t i a l -v a l u e  pr o b le m s

Â fundam ental theorem  in the calculus of variations states th a t in order 
th a t the linear problem  W

(^fi) = /

adm its a variational form ulation the operator of the problem  m ust be 
sym m etric.

(*) Istituto di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 
20133'Milano.

(**) Nella seduta dell’n  dicembre 1971.
(1) By this word we mean the set of the equation and of the initial and boundary 

conditions.
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If  the operator is non-linear, the corresponding necessary condition is 
th a t the G ateaux  derivative of the  operator be sym m etric [5, pag. 56] <2>. 
In  the general case the functional th a t corresponds to the equation of the 
problem  is

1
(2.2) F  [u] =  F  [u0\ +  j  (u —  u0 i L  (u0 +  \ ( u  —  u0))) dX — ( / ,  u)

0

where u0 is any  function th a t belongs to the dom ain D (L) [5, pag. 58]. In  
the case of linear operators, the functional (2.2) becomes

(2.3) F[u] = - l < « , L « )  — </ ,«>.

As an exam ple, let us consider the sim plest initial value problem  

(2-4) “3 7 ^ ( 0  = / ( 0 ; u(o)  =  o \  o < t < T ]  u( t )  e C ^ o  , T] ,

T he operator of this problem  will be denoted by  L  while the form al 
differential operator d /d t will be denoted by £ <3). T he operator L  is not 
sym m etric w ith the usual bilinear form

T

(2-S) {u . v) =

but it is sym m etric w ith the convolution bilinear form

T

(2.6) (u , v)c =  j U (T —  t) v (t) d t.
0

T hen w ith the usual b ilinear form  we cannot have a variational form u
lation for initial-value problem s, while using the convolution bilinear form 
th a t becombs possible.

I f  the problem  is given by  two sets of equations

(2-7) =  /  ; Mv ~  CM

j ' u (t) v (t) d t

(2) We remember that the condition of symmetry of the Gateaux derivative of the 
operator becoijnes also sufficient if the domain of the operator is simply connected [5, pag. 32].

(3) Herö and in the following we use capital Italic letters for the formal operator Si and 
capital letters for the operator L. To the domain D (L) of the operator belong space-time 
functions (with a specified functional class) that satisfy the boundary and initial conditions 
of the particular problem we intend to study.
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(where N , M , C  are linear, and C is also sym m etric), we can write the 
equations of the problem  in m atrix  form

(2.8)

that, pu tting  

(2.8 a) L

becomes

(2.9) L  w — g.

[ ° N" " V ’ f
[M — C u 0

0 W V
M — c > W := u ; g  = 0

R em em bering the condition stated above for the equation (2.1) we 
have th a t the necessary and sufficient condition for being able to deduce (2.7) 
from the sta tionarity  of a functional F  [u , v\ is th a t the operator L  of (2.9) 
be sym m etric, th a t is N and M m ust be one the adjoint of the other one: 
N =  M. I t ’s im portan t to stress th a t the sym m etry  of the operator of the 
problem  (2.1) and the condition N =  M for the problem  (2.7) do not refer 
to form al operators only bu t to complete operators [10]. T hen  from  (2.3) 
we obtain, using the bilinear form (2.6)

(2.10) F  [u , v] =  (v , M u)t —  — —

3. -  The boundary-initial value problem for Maxwell equations

In  every physical theory  the variational principles rest upon a m athe
m atical structure of field equations, and therefore they  can be constructed 
in a rational way, testing their sym m etry  w ith respect to some bilinear form: 
when the sym m etry  is assured, the functional is given by  (2.2).

Now we shall exam ine the structure of the equations of the electrom ag
netic field, and translate  them  into operator form. W e consider two skew-
sym m etric tensors Faß and / “ri w ith cartesian com ponents

(3-1).

011
00 II
O

c^k
rhk hkm j t

> J £ j

0110 II£

c ’ =  B“

and two vectors J a and <pa

(3.2) r  =  (cp;jj <?« =  (— ; - 2  A).

(4) From now on, Greek indices take values o , 1 , 2 ,3  (x° =  ct), Latin indices take 
values 1 , 2 , 3 :  letter x  includes the set of “ spatial” coordinates (x1, x2, x3). A pseudo- 
euclidean metric with signature (1 , — 1 , — 1 , — 1) is used, and Va is the co variant deriva
tive operator with respect to the coordinate xa. The tensor is the Ricci tensor.
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W ith the introduction of the four-potential cpx the two sets of M axwell 
equations can be w ritten <5> as

(3-3)
l v ar ß = f

( f 0*' ( o ; x )  =  o J e 2' =  o

where n is the outer norm al vector of the boundary  2  of t  and S ' u  2 "  =  2 , 
and

(3 4 )
j FaP =  y  [Vß <p« — V« <Pß] 

<P« (o ; *) =  O .

W e can w rite phenom enological equations in vacuo in the following form

(3*5) [^o/aß Faß.

T hen, from  equations (3.3), (3.4), (3.5), one can show th a t the potential cpa 
is solution of the equation

(3-6) [g°°g** VS Va — g*°g*r Vy Va] Ça =  2 (JL0 J 0

where is the m etric tensor.

4. -  M a x w e l l  e q u a t io n s  in  o p e r a t o r  n o t a t i o n

T he problem  (3.4) can be considered as describing a m apping between 
two function spaces as follows. L et us consider a first function vector space ® 
whose elem ents 9 are the set of four space-tim e functions <pa e C2 (£2) and the 
subset of this space form ed by those elem ents th a t satisfy homogeneous initial 
conditions given in (3.4): such a subset is a linear manifold. N ext we consider 
a second function space cv whose elem ents F  are the skew-sym m etric tensors 
Faß G C (ß)- Likewise we in troduce two m ore function spaces: we shall denote 
by Sf thé first one, whose elem ents J are the sets of four functions J a 6 C1 (£2), 
and by § the second space, whose elem ents f  are the skew-sym m etric tensors 

/aß 6 C (£2). T he problem  (3.3) is a m apping between the two spaces # and % 
given by  the^ linear differential operator N w ith a form al p art defined by 
the differential equation (3.3) and a dom ain defined by the functional class 
specified above and by the conditions (3.3). T he problem  (3.4) is a m apping  
between the two spaces ® and W given by  the differential linear operator M 
w ith form al p art 011 defined by (3.4) and w ith dom ain D (M ) given by  the 
linear m anifold specified above.

(5) We consider the electromagnetic field in a bounded region t c R 3 or, with space- 
time notation, in a cylindrical region Q of V4. We assume here initial and boundary conditions 
to be homogeneous, to work with a linear problem. An extension to the case of non-homo- 
geneous conditions is easily done.

(6) Here and in the following we use the system [M.K.S.Q.]raz
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Problem s (3.3) and (3.4) w ith the equation (3.5) can thus be pu t in 
operator form

(4.1) M<p =  C - V  ; N /  =  J ( /  =  C F ) .

According to w hat we said in § 2 in order to give a variational form u
lation to both problem s we m ust verify w hether N =  M.

Now we consider the adjo in t of the operator M corresponding to two 
possible bilinear forms. F irst we try  w ith the usual bilinear forms

9“ 0 ° ; x) Ja (x° ; x) dQ  ;
Q

(4.3) <F,y> =  J J J J  Faß (*o ; *) f aß (xO ; x) dQ
J Q

where O is the region of V4 where we define the  field functions. (See the 
footnote <5>). T he function spaces <D and 3 are p u t in duality  w ith the bilinear 
form  (4.2), and the sam e is for the spaces SF and a natu ra l request is th a t 
the duality  be separating (i.e. for every 9 =J= 0 , 0 being the null elem ent of 
the space, there m ust exist a t least an elem ent such th a t ( 9 , 4>). =j= o); 
w ith this request if (9 , =  o for every 9, then m ust be XY =  0.

One can easily show th a t the duality  between the function spaces ® 
and $ is separating, and likewise for $  and §, as f  and F  are defined 
as skew-sym m etric tensors.

T he adjo in t operator M of the operator M is defined by the identity

(4.4) < /, Mcp> =  <M /, cp)

for every 9 e D (M) and  / g D ( M ) .  Even if the form al operator 0L is 
the form al adjo in t of 0R , D (M) =(= D (N), on account of initial conditions: 
therefore N So we can say th a t a variational formulation of the
problems (4.1) with usual bilinear form s is not possible.

T he custom ary trick  introduced in field theory  to overcom e this difficulty 
is to ignore one physical initial condition and to add an “ ad h o c ” unphysical 
final condition. So in our problem  we obtain another operator M7 defined 
by  the sam e form al p art 0R defined in (3.4) bu t w ith another condition on 
the tim e variable

(4.5) 9« (o ; *) =  o ; 9a (X° ; *) =  o

while we can elim inate the initial condition of the problem  (3.3) thus obtaining 
a new operator NL Now, we have N '=  M ' and, according to (2.10), we 
deduce the new problem  from  the stationarity  of the functional

G [ / ,  9] =  < /, M » - i  < /, C -1/ )  -  <9 , J>.(4.6)
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T he functional (4.6) is one of the various bu t equivalent forms of the 
“ classical ” variational form ulation (for exam ple see [6], [7], [8, ch. 24]). 
Now if we w ant to m ain tain  our physically m eaningful initial conditions, 
we can overcome the difficulty stated above by introducing a new bilinear 
form, precisely a convolution bilinear form defined as follows:

(4.7) {J,cp)c = J J J J j a(X0- x 0 ; x ) 9oi(x0 ; X)dQ
Q

(4.8) { F , f ) c = f S S S  F“p (X ° ~ * ° ; /aß  (* ° ; x ) d ü -
J Q

W ith the bilinear form  (4.7), (4.8) one can verify th a t N =  M and our 
problem s can be deduced from  the stationarity  of a functional, as we shall 
see in the next sections.

5. -  V a r i a t i o n a l  f o r m u l a t i o n  f o r  t h e  w a v e  p r o b le m

T he fundam ental problem  of the electrom agnetic field is to find the 
electrom agnetic potential given by  a charge-current distribution. T he electro
m agnetic potential <pa is solution of the equation (3.6) w ith the initial 
condition (3.4): in operator notation we have

(5.1) MCMcp =  J .
__
T he operator M CM  is sym m etric as can be easily seen:

(5.2) , MCM9>, ee <M  ̂ , CM?>, =  (MCM^ , f>e .

T hen from  (2.3) the functional of the problem  (5.1) is

(5-3) F  M  =  -  <? , M C M 9>, -  <9 , J>,

th a t is

(5.3 a) F [9] =  -  —  J J J J  [93(X° -  x° ; *) ( / V /or(*° ; *) - # V / « r ( * °  ; *)) -
' Q

—  9“ (X° — x° ; *) JB (x° ; *)] d Q .

W e stress the fact th a t the dom ain D (F) of the functional is exactly  
the dom ain iof the given problem .

From  its variation and the properties of the convolution we have

( 5 - 4 ) SF [9] =  , M C M 9 —  J ) ,  ; 9 e D (M CM )
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from  which, if we require th a t SF =  o the fundam ental problem  follows. 
T hen  we can state the following

THEOREM I: The electromagnetic four-potential <pa, solution of the
boundary-initial value wave problem (5.1) makes stationary the functional 
given by (5.3), and viceversa.

W hat about the m inim um  character of this functional?
L et us consider the functional (5.3): if we calculate its second variation 

putting  9 =  9o “I“ Z(P (when 90 is solution of the problem , and therefore 
m akes F  stationary) we have

(5-5) 82 F =  - < 9  .M C M ip),

and  we can easily verify th a t §2 F  is not positive or negative definite. The 
absence of m inim um  is not typical of the convolution bilinear form, and also 
w ith the usual bilinear form  we cannot speak of “ m inim um  ” p roperty  of 
the functionals, even if in the literature the m inim um  character of the func
tional is sometimes stated.

6. -  C a n o n ic a l  fo r m  o f  t h e  v a r i a t i o n a l  T h e o r e m  I

T he boundary-in itial value problem  for the equations (3.3) and (3.4) 
can be w ritten in the following operator form (see § 4)

(6.1) M f  =  J M<p =  C~1f .

Therefore the functional of the problem  is (see the functional (2.10))

(6.2) F  [ / ,  <p] =  < /, M 9>, -  <9 , J ) ,  — -  < /, f i ’1/ ) ,

th a t is

(6.2 a) T  (X° —  x ° ; x )  (9W.  (*° ; *) -  9a/g (x° ; *)) •

-  9ct (X° -  *° ; *) (*° ! *) +  -  !*„ T  (X° -  x° ; x)  / a(3 (^° ; «) d û .

T he elements /  and 9 of the dom ain D (F) of the functional (6.2) are the 
élém ents of the dom ains D (N) and D (M) respectively. T hen we have the 
following

THEOREM II: The electromagnetic four-potential 9 “ and the electromagnetic 
fie ld  tensor / a0, solutions of the bound ary-initial value problems (3.3) and  (3.4), 
that is of the M axwell equations in canonical fo rm , make stationary the 
functional (6.2), and viceversa.

A gain we stress the fact th a t no final condition on the field functions 9a 
and / aß is needed.
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7. -  Reciprocity Theorem

On account of the sym m etry  of the operator of the wave problem , we 
can easily deduce a form ulation of the reciprocity Theorem ; let us consider 
two different charge distributions be cpx and <p2 the corresponding
potentials.

From  the sym m etry of MCM we obtain 

(7-0 <Ji . ?2>, =  (MCMcp! , <p2), =  {«Pi , MCMtp2}( E= <9!, J2>, 

th a t is

(7-2) J jJ J  Jio (X°— x° ; x) 92 (x° ; x) dO ; 9Î(X° — x° ; x) J2a( °̂ ; x) dü.

W e stress the fact th a t this form ulation depends only upon the sym 
m etry  of the operator M CM .

W e consider three particu lar cases, the electrostatic field, the m agne
tostatic field and the electrom agnetic stationary  field. In  the first case, we 
have from  (7.1), (3.1) and (3.2).

(7-3) p2 (P) ® i(P )d V ^ Pl(P) ®2(P) dV

th a t gives the electrostatic form ulation of the reciprocity Theorem . Likewise 
we obtain the m agnetostatic form ulation of this Theorem , given by:

(7'4) / / /  (P )' ^ (P) d v  "  / / /  ̂  (P )^ 2 (P) d v -

Now let us consider a sta tionary  electrom agnetic field, th a t is we suppose 
th a t 9 =  9 -exp and J =  J - exp  (/co/): then from (7.2) we have

(7-5) [p8 (P)-®i ( P ) - J 2 -Ä1 (P)] dV =

V
[pi (P) ®a(P)— Ji(P )-A a (P)] dV.

I f  we rem em ber th a t for s ta tionary  fields and charges distributions the 
continuity  equation (that is a necessary condition of the wave equation) 
begins

(7.6) d i v j  +  /cop =  o

and th a t the electric field is

E =  — [grad <D +  /coÄ](7-7)
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from  (7.5) we have, on account of the divergence Theorem  and boundary  
conditions:

(7.8) J a - E i d V s  Ji • E2 dV
V Y

th a t is the Lorentz reciprocity  Theorem  for stationary  fields. T he various 
form ulations of the reciprocity  Theorem  (see ref. [8, ch. 3] and [9, ch. 10]) 
are thus derivable from  the properties of structure of the operator M CM  and 
are all particu lar cases of the general reciprocity  Theorem  given by  (7.2).

8 . -  C o n c l u sio n

T he paper deals w ith a variational form ulation of the com plete boundary- 
in itia l value problem  of electrom agnetism .

C ontrary  to  the  usual practice, initial value conditions are taken  into 
account w ithout recourse to artfu l final conditions. This is possible by  using 
a convolution bilinear form  th a t m akes the field operator sym m etric: m oreover, 
as a consequence of such sym m etry, a reciprocity  Theorem  valid for tim e- 
varying electrom agnetic fields is obtained, th a t contains the Lorentz recipro
city Theorem  as a p articu lar case.
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