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Fisica m atem atica. —  Action principles fo r  electromagnetism. 
Nota di C a r l o  M o r o s i  n , presentata ((*) **> dal Socio B. F i n z i .

Riassunto. —■ La presente Nota riguarda un principio di azione per il campo elettro- 
magnetico che differisce da quello usuale per il fatto che il potenziale elettromagnetico, in 
corrispondenza al quale il funzionale di azione è stazionario, coincide con la soluzione del­
l’equazione delle onde soddisfacente sia le condizioni al contorno che tutte quelle iniziali 
assegnate.

Infatti il funzionale d’azione classico è stazionario in corrispondenza ad un potenziale 
il quale soddisfa sì l’equazione delle onde e le condizioni al contorno, ma non tutte le condi­
zioni iniziali date. Il progresso che si realizza con il presente metodo è possibile per l’uso di 
una forma bilineare convolutiva, che rende simmetrico l’operatore di campo. Come conse­
guenza di tale simmetria, si ottiene un teorema di reciprocità valido per campi variabili nel 
tempo, che contiene come caso particolare il teorema di reciprocità di Lorentz.

i . I n t r o d u c t io n

T he possibility of a variational form ulation for linear in itial value p ro ­
blems, discovered by G urtin  [ i] , has been recently  discussed in detail by 
T onti [2], who pu t in evidence the im portance of a convolution bilinear form 
for the existence of such a variational form ulation. In  particu lar, using a 
convolution bilinear form, one can give a variational form ulation for linear 
initial value problem s in a w ay th a t g reatly  simplifies the G urtin  m ethod [3]. 
T he purpose of this paper is to apply  the convolution bilinear form  to the 
variational form ulation of the boundary-in itial value problem  of the electro­
m agnetic field. A n analysis of the operator features of this problem  is m ade, 
and a variational form ulation is given, sim pler than  the one obtained w ith 
the G urtin  m ethod [4]. R eferring to quoted papers, and particu larly  to 
paper [2], for m ore details, in the next section we sum m arize the m ain 
characteristics of this procedure.

2. -  V a r ia t io n a l  f o r m u l a t io n  fo r  i n i t i a l -v a l u e  pr o b le m s

Â fundam ental theorem  in the calculus of variations states th a t in order 
th a t the linear problem  W

(^fi) = /

adm its a variational form ulation the operator of the problem  m ust be 
sym m etric.

(*) Istituto di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 
20133'Milano.

(**) Nella seduta dell’n  dicembre 1971.
(1) By this word we mean the set of the equation and of the initial and boundary 

conditions.
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If  the operator is non-linear, the corresponding necessary condition is 
th a t the G ateaux  derivative of the  operator be sym m etric [5, pag. 56] <2>. 
In  the general case the functional th a t corresponds to the equation of the 
problem  is

1
(2.2) F  [u] =  F  [u0\ +  j  (u —  u0 i L  (u0 +  \ ( u  —  u0))) dX — ( / ,  u)

0

where u0 is any  function th a t belongs to the dom ain D (L) [5, pag. 58]. In  
the case of linear operators, the functional (2.2) becomes

(2.3) F[u] = - l < « , L « )  — </ ,«>.

As an exam ple, let us consider the sim plest initial value problem  

(2-4) “3 7 ^ ( 0  = / ( 0 ; u(o)  =  o \  o < t < T ]  u( t )  e C ^ o  , T] ,

T he operator of this problem  will be denoted by  L  while the form al 
differential operator d /d t will be denoted by £ <3). T he operator L  is not 
sym m etric w ith the usual bilinear form

T

(2-S) {u . v) =

but it is sym m etric w ith the convolution bilinear form

T

(2.6) (u , v)c =  j U (T —  t) v (t) d t.
0

T hen w ith the usual b ilinear form  we cannot have a variational form u­
lation for initial-value problem s, while using the convolution bilinear form 
th a t becombs possible.

I f  the problem  is given by  two sets of equations

(2-7) =  /  ; Mv ~  CM

j ' u (t) v (t) d t

(2) We remember that the condition of symmetry of the Gateaux derivative of the 
operator becoijnes also sufficient if the domain of the operator is simply connected [5, pag. 32].

(3) Herö and in the following we use capital Italic letters for the formal operator Si and 
capital letters for the operator L. To the domain D (L) of the operator belong space-time 
functions (with a specified functional class) that satisfy the boundary and initial conditions 
of the particular problem we intend to study.
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(where N , M , C  are linear, and C is also sym m etric), we can write the 
equations of the problem  in m atrix  form

(2.8)

that, pu tting  

(2.8 a) L

becomes

(2.9) L  w — g.

[ ° N" " V ’ f
[M — C u 0

0 W V
M — c > W := u ; g  = 0

R em em bering the condition stated above for the equation (2.1) we 
have th a t the necessary and sufficient condition for being able to deduce (2.7) 
from the sta tionarity  of a functional F  [u , v\ is th a t the operator L  of (2.9) 
be sym m etric, th a t is N and M m ust be one the adjoint of the other one: 
N =  M. I t ’s im portan t to stress th a t the sym m etry  of the operator of the 
problem  (2.1) and the condition N =  M for the problem  (2.7) do not refer 
to form al operators only bu t to complete operators [10]. T hen  from  (2.3) 
we obtain, using the bilinear form (2.6)

(2.10) F  [u , v] =  (v , M u)t —  — —

3. -  The boundary-initial value problem for Maxwell equations

In  every physical theory  the variational principles rest upon a m athe­
m atical structure of field equations, and therefore they  can be constructed 
in a rational way, testing their sym m etry  w ith respect to some bilinear form: 
when the sym m etry  is assured, the functional is given by  (2.2).

Now we shall exam ine the structure of the equations of the electrom ag­
netic field, and translate  them  into operator form. W e consider two skew-
sym m etric tensors Faß and / “ri w ith cartesian com ponents

(3-1).

011
00 II
O

c^k
rhk hkm j t

> J £ j

0110 II£

c ’ =  B“

and two vectors J a and <pa

(3.2) r  =  (cp;jj <?« =  (— ; - 2  A).

(4) From now on, Greek indices take values o , 1 , 2 ,3  (x° =  ct), Latin indices take 
values 1 , 2 , 3 :  letter x  includes the set of “ spatial” coordinates (x1, x2, x3). A pseudo- 
euclidean metric with signature (1 , — 1 , — 1 , — 1) is used, and Va is the co variant deriva­
tive operator with respect to the coordinate xa. The tensor is the Ricci tensor.
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W ith the introduction of the four-potential cpx the two sets of M axwell 
equations can be w ritten <5> as

(3-3)
l v ar ß = f

( f 0*' ( o ; x )  =  o J e 2' =  o

where n is the outer norm al vector of the boundary  2  of t  and S ' u  2 "  =  2 , 
and

(3 4 )
j FaP =  y  [Vß <p« — V« <Pß] 

<P« (o ; *) =  O .

W e can w rite phenom enological equations in vacuo in the following form

(3*5) [^o/aß Faß.

T hen, from  equations (3.3), (3.4), (3.5), one can show th a t the potential cpa 
is solution of the equation

(3-6) [g°°g** VS Va — g*°g*r Vy Va] Ça =  2 (JL0 J 0

where is the m etric tensor.

4. -  M a x w e l l  e q u a t io n s  in  o p e r a t o r  n o t a t i o n

T he problem  (3.4) can be considered as describing a m apping between 
two function spaces as follows. L et us consider a first function vector space ® 
whose elem ents 9 are the set of four space-tim e functions <pa e C2 (£2) and the 
subset of this space form ed by those elem ents th a t satisfy homogeneous initial 
conditions given in (3.4): such a subset is a linear manifold. N ext we consider 
a second function space cv whose elem ents F  are the skew-sym m etric tensors 
Faß G C (ß)- Likewise we in troduce two m ore function spaces: we shall denote 
by Sf thé first one, whose elem ents J are the sets of four functions J a 6 C1 (£2), 
and by § the second space, whose elem ents f  are the skew-sym m etric tensors 

/aß 6 C (£2). T he problem  (3.3) is a m apping between the two spaces # and % 
given by  the^ linear differential operator N w ith a form al p art defined by 
the differential equation (3.3) and a dom ain defined by the functional class 
specified above and by the conditions (3.3). T he problem  (3.4) is a m apping  
between the two spaces ® and W given by  the differential linear operator M 
w ith form al p art 011 defined by (3.4) and w ith dom ain D (M ) given by  the 
linear m anifold specified above.

(5) We consider the electromagnetic field in a bounded region t c R 3 or, with space- 
time notation, in a cylindrical region Q of V4. We assume here initial and boundary conditions 
to be homogeneous, to work with a linear problem. An extension to the case of non-homo- 
geneous conditions is easily done.

(6) Here and in the following we use the system [M.K.S.Q.]raz
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Problem s (3.3) and (3.4) w ith the equation (3.5) can thus be pu t in 
operator form

(4.1) M<p =  C - V  ; N /  =  J ( /  =  C F ) .

According to w hat we said in § 2 in order to give a variational form u­
lation to both problem s we m ust verify w hether N =  M.

Now we consider the adjo in t of the operator M corresponding to two 
possible bilinear forms. F irst we try  w ith the usual bilinear forms

9“ 0 ° ; x) Ja (x° ; x) dQ  ;
Q

(4.3) <F,y> =  J J J J  Faß (*o ; *) f aß (xO ; x) dQ
J Q

where O is the region of V4 where we define the  field functions. (See the 
footnote <5>). T he function spaces <D and 3 are p u t in duality  w ith the bilinear 
form  (4.2), and the sam e is for the spaces SF and a natu ra l request is th a t 
the duality  be separating (i.e. for every 9 =J= 0 , 0 being the null elem ent of 
the space, there m ust exist a t least an elem ent such th a t ( 9 , 4>). =j= o); 
w ith this request if (9 , =  o for every 9, then m ust be XY =  0.

One can easily show th a t the duality  between the function spaces ® 
and $ is separating, and likewise for $  and §, as f  and F  are defined 
as skew-sym m etric tensors.

T he adjo in t operator M of the operator M is defined by the identity

(4.4) < /, Mcp> =  <M /, cp)

for every 9 e D (M) and  / g D ( M ) .  Even if the form al operator 0L is 
the form al adjo in t of 0R , D (M) =(= D (N), on account of initial conditions: 
therefore N So we can say th a t a variational formulation of the
problems (4.1) with usual bilinear form s is not possible.

T he custom ary trick  introduced in field theory  to overcom e this difficulty 
is to ignore one physical initial condition and to add an “ ad h o c ” unphysical 
final condition. So in our problem  we obtain another operator M7 defined 
by  the sam e form al p art 0R defined in (3.4) bu t w ith another condition on 
the tim e variable

(4.5) 9« (o ; *) =  o ; 9a (X° ; *) =  o

while we can elim inate the initial condition of the problem  (3.3) thus obtaining 
a new operator NL Now, we have N '=  M ' and, according to (2.10), we 
deduce the new problem  from  the stationarity  of the functional

G [ / ,  9] =  < /, M » - i  < /, C -1/ )  -  <9 , J>.(4.6)
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T he functional (4.6) is one of the various bu t equivalent forms of the 
“ classical ” variational form ulation (for exam ple see [6], [7], [8, ch. 24]). 
Now if we w ant to m ain tain  our physically m eaningful initial conditions, 
we can overcome the difficulty stated above by introducing a new bilinear 
form, precisely a convolution bilinear form defined as follows:

(4.7) {J,cp)c = J J J J j a(X0- x 0 ; x ) 9oi(x0 ; X)dQ
Q

(4.8) { F , f ) c = f S S S  F“p (X ° ~ * ° ; /aß  (* ° ; x ) d ü -
J Q

W ith the bilinear form  (4.7), (4.8) one can verify th a t N =  M and our 
problem s can be deduced from  the stationarity  of a functional, as we shall 
see in the next sections.

5. -  V a r i a t i o n a l  f o r m u l a t i o n  f o r  t h e  w a v e  p r o b le m

T he fundam ental problem  of the electrom agnetic field is to find the 
electrom agnetic potential given by  a charge-current distribution. T he electro­
m agnetic potential <pa is solution of the equation (3.6) w ith the initial 
condition (3.4): in operator notation we have

(5.1) MCMcp =  J .
__
T he operator M CM  is sym m etric as can be easily seen:

(5.2) , MCM9>, ee <M  ̂ , CM?>, =  (MCM^ , f>e .

T hen from  (2.3) the functional of the problem  (5.1) is

(5-3) F  M  =  -  <? , M C M 9>, -  <9 , J>,

th a t is

(5.3 a) F [9] =  -  —  J J J J  [93(X° -  x° ; *) ( / V /or(*° ; *) - # V / « r ( * °  ; *)) -
' Q

—  9“ (X° — x° ; *) JB (x° ; *)] d Q .

W e stress the fact th a t the dom ain D (F) of the functional is exactly  
the dom ain iof the given problem .

From  its variation and the properties of the convolution we have

( 5 - 4 ) SF [9] =  , M C M 9 —  J ) ,  ; 9 e D (M CM )
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from  which, if we require th a t SF =  o the fundam ental problem  follows. 
T hen  we can state the following

THEOREM I: The electromagnetic four-potential <pa, solution of the
boundary-initial value wave problem (5.1) makes stationary the functional 
given by (5.3), and viceversa.

W hat about the m inim um  character of this functional?
L et us consider the functional (5.3): if we calculate its second variation 

putting  9 =  9o “I“ Z(P (when 90 is solution of the problem , and therefore 
m akes F  stationary) we have

(5-5) 82 F =  - < 9  .M C M ip),

and  we can easily verify th a t §2 F  is not positive or negative definite. The 
absence of m inim um  is not typical of the convolution bilinear form, and also 
w ith the usual bilinear form  we cannot speak of “ m inim um  ” p roperty  of 
the functionals, even if in the literature the m inim um  character of the func­
tional is sometimes stated.

6. -  C a n o n ic a l  fo r m  o f  t h e  v a r i a t i o n a l  T h e o r e m  I

T he boundary-in itial value problem  for the equations (3.3) and (3.4) 
can be w ritten in the following operator form (see § 4)

(6.1) M f  =  J M<p =  C~1f .

Therefore the functional of the problem  is (see the functional (2.10))

(6.2) F  [ / ,  <p] =  < /, M 9>, -  <9 , J ) ,  — -  < /, f i ’1/ ) ,

th a t is

(6.2 a) T  (X° —  x ° ; x )  (9W.  (*° ; *) -  9a/g (x° ; *)) •

-  9ct (X° -  *° ; *) (*° ! *) +  -  !*„ T  (X° -  x° ; x)  / a(3 (^° ; «) d û .

T he elements /  and 9 of the dom ain D (F) of the functional (6.2) are the 
élém ents of the dom ains D (N) and D (M) respectively. T hen we have the 
following

THEOREM II: The electromagnetic four-potential 9 “ and the electromagnetic 
fie ld  tensor / a0, solutions of the bound ary-initial value problems (3.3) and  (3.4), 
that is of the M axwell equations in canonical fo rm , make stationary the 
functional (6.2), and viceversa.

A gain we stress the fact th a t no final condition on the field functions 9a 
and / aß is needed.
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7. -  Reciprocity Theorem

On account of the sym m etry  of the operator of the wave problem , we 
can easily deduce a form ulation of the reciprocity Theorem ; let us consider 
two different charge distributions be cpx and <p2 the corresponding
potentials.

From  the sym m etry of MCM we obtain 

(7-0 <Ji . ?2>, =  (MCMcp! , <p2), =  {«Pi , MCMtp2}( E= <9!, J2>, 

th a t is

(7-2) J jJ J  Jio (X°— x° ; x) 92 (x° ; x) dO ; 9Î(X° — x° ; x) J2a( °̂ ; x) dü.

W e stress the fact th a t this form ulation depends only upon the sym ­
m etry  of the operator M CM .

W e consider three particu lar cases, the electrostatic field, the m agne­
tostatic field and the electrom agnetic stationary  field. In  the first case, we 
have from  (7.1), (3.1) and (3.2).

(7-3) p2 (P) ® i(P )d V ^ Pl(P) ®2(P) dV

th a t gives the electrostatic form ulation of the reciprocity Theorem . Likewise 
we obtain the m agnetostatic form ulation of this Theorem , given by:

(7'4) / / /  (P )' ^ (P) d v  "  / / /  ̂  (P )^ 2 (P) d v -

Now let us consider a sta tionary  electrom agnetic field, th a t is we suppose 
th a t 9 =  9 -exp and J =  J - exp  (/co/): then from (7.2) we have

(7-5) [p8 (P)-®i ( P ) - J 2 -Ä1 (P)] dV =

V
[pi (P) ®a(P)— Ji(P )-A a (P)] dV.

I f  we rem em ber th a t for s ta tionary  fields and charges distributions the 
continuity  equation (that is a necessary condition of the wave equation) 
begins

(7.6) d i v j  +  /cop =  o

and th a t the electric field is

E =  — [grad <D +  /coÄ](7-7)
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from  (7.5) we have, on account of the divergence Theorem  and boundary  
conditions:

(7.8) J a - E i d V s  Ji • E2 dV
V Y

th a t is the Lorentz reciprocity  Theorem  for stationary  fields. T he various 
form ulations of the reciprocity  Theorem  (see ref. [8, ch. 3] and [9, ch. 10]) 
are thus derivable from  the properties of structure of the operator M CM  and 
are all particu lar cases of the general reciprocity  Theorem  given by  (7.2).

8 . -  C o n c l u sio n

T he paper deals w ith a variational form ulation of the com plete boundary- 
in itia l value problem  of electrom agnetism .

C ontrary  to  the  usual practice, initial value conditions are taken  into 
account w ithout recourse to artfu l final conditions. This is possible by  using 
a convolution bilinear form  th a t m akes the field operator sym m etric: m oreover, 
as a consequence of such sym m etry, a reciprocity  Theorem  valid for tim e- 
varying electrom agnetic fields is obtained, th a t contains the Lorentz recipro­
city Theorem  as a p articu lar case.
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