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Algebra. — On the algebra structure o f the s-d -rin g  over ’L p. 
Nota I di E sayas G eo r g e  K u n d e r t , presentata(,) dal Socio B. S e g r e .

R iassu n to .— La teoria degli j-^-anelli, sviluppata in tre precedenti Note lincee [1], 
[2], [3]» viene qui approfondita nel caso di d*-ö?-anelli aventi 7p come anello delle costanti. 
Per essi, in questa Nota I ed in una successiva Nota II, vengono stabiliti i due Teoremi speci
ficati nel preambolo, ottenendo anche estensioni mod p  di alcuni risultati classici di teoria 
dei numeri elementare (fattorizzazioni di coefficienti multinomiali, piccolo Teorema di 
Fermat, criterio di Eulero per i residui quadratici).

Let 31 p denote the s-d— ring with 7P as ring of constants. (All definitions 
used in this paper m ay be found in [1], [2], [3]). 31̂  is a certain type of
Z^-Hopf algebra (see [2]). In this article we will however use only the fact 
that 31̂  is a free Z^-algebra with an infinite basis {#,*},• =0 x 2 ... (see [i])-

n

We shall prove two Theorems concerning 31̂ . If we write n Xi =■
„  # v=l V

=  2 u ß (s IO  x s then the first Theorem deals with the dependence of
s > 0

ß (s I zv) E 7 p on the indices (s | zv). We show that the index symbols (s\z^) 
m ay be collected into classes which form a commutative semi-group 3  with 
identity element and that ß (s | zv) defines a homomorphism from 3 onto the 
multiplicative group of 7P together with the zero. A Corollary shows an inti
mate connection with a Theorem of L. E. Dickson concerning factorization 
of multinomial coefficients in 7P.

The second Theorem (to be proved in a following “ Nota II ”) shows 
the existence of a Z^-algebra isomorphism from 31̂  onto a well-characterized 
subalgebra 31̂  of the direct sum of countably m any copies of 7P and it is further 
shoWn that 31̂  is built up by a chain of subalgebras Apm each of which is 
mapped by the above mentioned isomorphism onto a subalgebra Apm which 
in turn is isomorphic to a direct sum of p m copies of 7P. This allows us to 
draw conclusions about factorization in 31̂ . We see for example that 31̂  -  
while not a field -  consists of units and zerodivisors only and that there are 
no irreducible elements in 31̂ . Our explicit description of the isomorphism 
permits us also to test each given element for being a unit or zerodivisor.
» : ■ The previously discovered fact that Ferm at’s Theorem holds in 31̂  
(see [4]) is now easily explained on ground of Ferm at’s Theorem in 7P. 
(The proof of Ferm at’s Theorem given in [4] does not assume Ferm at’s 
Theorem in 7Pi the latter is then a consequence of the former). Other number 
theoretical Theorems of 7p may be lifted to 31̂ , we mention as another example 
Euler’s Criterion for quadratic rests. Finally we show with help of Theorem II 
how ß (s I z’v) may be computed in terms of binomial coefficients and in parti-

(*) Nella seduta del 13 novembre 1971.
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cular how it may be expressed in terms of the difference operator A (used 
in difference calculus). That ß (s | zv) can be expressed in terms of binomial 
coefficients is clear also from the facts that ß ([sr | i , j )  for two indices i , j  
is computable in terms of binomial coefficients (see [3] page 477) and that 
ß (s I zv) is a sum of products of such ß (s' | i , f )  which follows at once from 
its definition; however the representation which we give is a different one. 
Comparison of the two representations gives certain identities between 
binomial coefficients. In the rem ark at the end of the announced “ Nota II ” , 
we shall give the simplest example of such an identity. It should not be difficult 
to prove these identities directly or with help of difference calculus.

To be able to formulate Theorem I we make the following definitions:

1) We call si  =  (s I zv) an index symbol if  ̂ , 7V (v =  1, 2 , 3 , • • •) 
are non-negative integers and zv =  o for large v.

2) We expand and zv in terms of powers of p  : p^ and

zv — 2 j  P  ̂ where o <  <  p  — 1 and o <  xv{X <  p  — 1 and define
[x>0

,1 =  (o^ I xv{A) to be the associated (infinite) matrix to si  where the form 
the first column and xv{Jt (v fixed) the v-th column.

N ote : si  and sl determine each other uniquely.
3) We define: sl if and only if tJ is obtained from sl by a). 

A finite number of permutations of rows and è). A  finite number of permu
tations of elements xv[JL in the (Ji-th row. This is clearly an equivalence relation. 
We define further: si ~  tj  iff 1̂ ~  t J for the associated matrices. Let (si) =  (sl) 
denote the equivalence class of si  or .̂1 and 3 the set of these equivalence 
classes.

4) We introduce a multiplication in 3  : (ST) • (^J) =  where the 
symbol on the right denotes the class of the matrix formed by the rows of 
sl and s] together. (The order of the rows is of course irrelevant). It is clear 
that this multiplication is well-defined, associative and commutative. The 
class of the O -m atrix plays the role of the identity element. 3  becomes the
refore together with this multiplication a commutative semi-group with an 
identity. Besides the identity there are no units in 3 -

5) Let sq =  (s \ vi) be an index symbol with o <  s < p — 1 and 
o <  v7 <  p  —- I but sq =|= (o I o). It is clear that sq =  and that (sq) is an 
irreducible element in 3 - On the other hand any irreducible element in 3 
must be iff this form. Furthermore one checks at once that: Every element 
of 3  is a finite product of irreducible elements and this representation is unique 
up to order of factors.

6) We define a mapping from 3  into Xp \ Let ( si) e 3 , si =  (s | f ) .  
Let {x t‘}. be a basis for the Z^-algebra %p and let n

V J
then define:

ß : 3  ->
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T heorem  I. ß is a well-defined homomorphism from  the semigroup 3  
onto the multiplicative group of Zp together with the zero element.

Proof. Let sz =  (s \ i f  and ,1 =  | xv|J) its associated matrix. We
show first:

ß (S I *'v) =  II ß (<V I >V) •IL>0

We m ay assume that iv >  7V+1 because the commutative law holds in 81̂  and 
therefore the value of ß (s | i f  is independent of the order of the iv . From

the definition of ß (s ] i f  and the fact that ß (s \ ix, i f  =  (— i) ‘1+’2+I( . j | j

(see [3] the Remark after Lemma I) it follows at once that ß (s | i f  =  o 
if s < i lt  but from s < i\ => <  xipio for some y0 and ß (<7|X[i | xV[J.0) =  o .
Therefore if s < i i  then (A) holds. (A) holds clearly for (s \ i f  =  (o | o). 
We assume now that j  >  n  and that (A) be true for s' <  j. (A) is trivial 
for s < p .  Let ^  be such that aH 4= o but g[x =  o for p. <  ^ . Now if d

is the semi-derivation in then d (p'M) is also a semi-derivation (see [6]). 
Let im =j= o but zv =  o for v >  m. W e  have then:

(B) d ^ 1} ** • • • ^  =  2  ß (fi *0 *

__  V  7 1+ P i + P 2+ - -  - + p m

(Pl>P2» • • ’y9m) =# (0,0, ••;,())

where pv == o or i and xj is to be put =  o if j  <  o.
If h  <  => ß ( j |  zv) =  o and ß (or^ | Xv^) =  o also and therefore (A)

holds. Assume i\ From (B) and the induction hypothesis follows
then:

(c) ß (s 12V) — 2  (— *) ß o —p ^1 11 —
(Pl,P2, - - - ,P w) +  (0 ,0 , - . - ,0 )  J

1 +  Pl +  P2H Pm
2mJ C  I )  ß  C ^ i  I P v)

M=^1 (Pi>P2» • • ‘>PW) 4= (0,0, • • • ,0) 1 1
II  ß (%. I O  ■

where we must put those ß ’s equal to zero, when at least one index becomes 
negative.

But we have also:

H ‘ “  2 l  ß (G I Xvtxi) Xa-1

(Pl»P2 »
2  (— 0

.PM) * < 0 , 0 , . . . , 0 )

1+Pj.H-------1-P„

^ 1 ^ - Pl Xx2H-p2 X;
~f>m ‘
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From which follows:

(E) ßOî 11 Xv̂ l., )  = (P1.P2- 2P̂ ) +(0,0, • ( - 0  
■, 0)

1+PlH---- \-9n
ß(< ' 1 I Pv) •

From (C) & (E) =» (A).
Now let tj  J, and apply (A) also for ß (1 1 vj )  the only changes on the 

right side of formula (A) which will occur consist in a permutation of factors 
ß ([ĝ  I xv{i) (which of course does not change the value of the right side) and 
a permutation of indices xvfX in ß | xvfX) for p, fixed. ß ( ^  ] Xv{x) *s the 
coefficient of in the expansion of in terms of the basis {x {} and is

 ̂ V
therefore independent of such a permutation since the multiplication in 91̂  
is commutative, ß is therefore well-defined on 3.

if  g o = n  (kq) is the factorization of (si) into irreducible elements then 

formula (A) tells us exactly that ßC0  =  I iß G y )-
k

From this and the fact that the factorization into irreducible elements 
is unique in 3  follows at once that ß is a homomorphism.

To show that ß is onto we observe that x 1- xn- i  =  n • x n — in — 1) x n_i 
and therefore ß (n | n — 1 , I ) — n mod p  for n >  1 and ß (o | 1) — o mod p.

j
C o ro l la ry .  Let m { be natural numbers (i — i, 2, • • •, r). P u t jm  = 2  m t 

and \mx , m % , • • •, m r] =  — {^ \ ' — ^T~nom^  coefficient). We have the 
following formulae:

r —1

I r \
(I) [m i, m 2, • • • ,m r] — (— 1)* 1 ß f XT Qm | mod p .

Let m t =  2  rti’n p^ then :

(II) [ « i , m% ,• • -, mr] =  J J  [xipi, x2li ,■ ■ -, x ] m o d / .
H>0

Let {m  =  21 P^ then :
[x>0 .

r

(III) K  , ,■ ■ -, m r] =  o m o d /  iff  ^ = (=  ^ x y!i

fo r  some p.,

Remarks'. (II) & (III) are well-known formulae of L. E. Dickson. See [5] 
pg. 273 for references. For r  — 2 (II) turns into Lucas’s formula for binomial 
coefficients:

mod p .  (See [5] pg. 271).
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(I)

Proof o f the corollary.

\™X , m 2 , • • •, m r] = r -  1O T> rm !
m 1l m 2l •• • m r_ 1 ! r_ 1m l m r l 

[mi 1 m2 ? * * * j wir-1] * (— i f  1 ß (ym J rm , r-pn)

r — 1 

S  im r - 2

0  IT ß ( r - j M  I r - j W l  , r ^ y ^ p n )  =  (--- i) ß ( JJ[ Qm I -Tfl , i - p f l )
J=0 \*=2

r — 1
z *.*■=1

by Theorem I.

(II) Suppose first that rxß =  2  xj^. for all [i.. It is clear that then also 
V, 7=1

ixß — 2  xjh for all (x. Since then Qm | p n , i-pn)  =  f j  Qx  ̂ | ,-x̂  , ^ x j  and
J ~1 tx>0

Z
observing that (— i)‘” =  (— i / " 0 we get by (I):

\fnl t m2, - ■ ■ ,m r\ =  J J (  i)‘ •* ßC-x^| , «-ix^ == [x1(1,x2|i,• • • ,xr|i] m od/ .
!4>0 JJL>0

Since [x1|4, x2(i, • • •, xr(J  =  - —f ~ - —r and p  -f numerator since _x„ <  p because
^ ljx  • * * ^r\x, i F- -£

of our assumption => [x1(i, x2(i, • • •, x ,J  ^  o mod p  => [mx , , • • •, »*r] =£ o
mod p  by (II). This shows that the condition given in (III) is necessary.

r

Next suppose that there exists a p.0 such that rxß =  ^  xy|X for ;r<  p,0
r  7 = 1

but p v o 4= 2 j  xMo . We have then =  2  Xy|Jlo —  zxp  ) i < z x < r . 
J = 1  7 = 1

For r  =  2 : , m2] =  (— i)1” ß(2w | 2m , xm)

= (— O1" II ß G>V I 2*ß ’ ixu) by (!)
11>0

and Theorem I, but xm = and j X , ,  = x1(, . Also 2x„o = x^ + x2(io— p  = 
=  ***. <7 x2ii.) <  xmo since p — x2(io >  o. Therefore ß (2x.io 12x^, =  o

=> [mx, m2] =  o mod p  and (III) holds for r = 2 .  Now [xl!io, x2[XJ  =  —'t*°+  *2tt°'>!
. 0 0  xiiv x2(io!

and by our assumption x ^  + .x 2(io >  p  => p \ ( x y  +  x2|jl(i) ! but p  f x ^ !
apb [^in0 » x2|J,  ] =■ o mod p =» (II) holds for r  =  2. Assume
next that (II) & (III) hold for r — I.

[mx , m 2 , ■ • •, mr] =  [mx , w 2 , • • •, ^ _ j ]  • (— i)r~1’K ß (r^  | rm  , ^_i;%)

= [tnx , m2, ■ ■ ■, mr_x] ■ (— i)”“1" ü  ß U J ̂  , r-i*»).
{Ji>0

r —1

Now either r-i'y , xy^ — sxp  in which case [mx , m2, • • • ,m r- x] =  o mod p
7 = 1
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by induction hypothesis and therefore (III) holds for r  or
r - l

r -  1̂ {X0 =  2    £2/  With S2 <
J =  1

then =r-i>Cn0 — (si—£3)^ <  r-ix ^  and ß (rx^ | ^ , r_ix^j) — o mod p  => (III)
X t

holds for r. Since [x1|Xo, ■ • • , x ,,J  =  r ^  ' , and ry,,„ >  p  by our
1̂-0 r ô ‘

assumption, it follows again that p  divides the numerator but not the denomi
nator and (II) holds for r.
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