ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ROGER H. MARTY

Supports in Product Spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **51** (1971), n.6, p. 463–465.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_51_6_463_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1971.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell'11 dicembre 1971 Presiede il Presidente Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Supports in Product Spaces. Nota di Roger H. MARTY, presentata ^(*) dal Socio B. Segre.

RIASSUNTO. — In questo lavoro che fa seguito a due Note lincee di altro Autore [1, 2], vengono studiati i sostegni delle funzioni continue definite su prodotti di spazi topologici soddisfacenti a certe condizioni di densità, di grado di cellularità, eccetera.

Recent studies have been made concerning supports of continuous functions (see for example Alas [1], [2], Marty [4], Ross and Stone [5], Ulmer [7], and earlier papers which these reference). The purpose of this note is to give generalizations of some results in [1], [4], and [5].

All spaces are assumed to be Hausdorff and to have at least two elements. The *degree of cellularity*, c(X), of a space X is the supremum of the cardinalities of the families of nonempty mutually disjoint open subsets of X. The *density* of a space X is the smallest cardinal m such that X has a dense subset of cardinality m, and the *weight* of X is the smallest infinite cardinal m such that X has a base of cardinality at most m. For an infinite cardinal p and a collection $\{X_{\alpha} : \alpha \in A\}$ of spaces we denote by X the Cartesian product of this collection with the p-topology (i.e., elementary neighborhoods are of the form $\bigcap \{\pi_{\alpha_{\xi}}^{+1}[U_{\xi}] : \xi \in \Xi\}$ where card $\Xi < p$ and U_{ξ} is an open set in $X_{\alpha_{\xi}}$ for every $\xi \in \Xi$). A support of a function f defined on SCX is a set BCA for which f(x) = f(y) for every $x, y \in S$ with $x \mid B = y \mid B$ ($x \mid B$ denotes the restriction of x to B). A support of a subset F of X is a set BCA for which $x \in F$, $y \in X$, and $x \mid B = y \mid B$ imply that $y \in F$ for every $x \in F$, $y \in X$.

THEOREM 1. If $c(X) \le m$, then every regular closed subset of X has a support of cardinality $\le \max\{m, p\}$.

Proof. Let $F = \overline{U}$. By Zorn's Lemma U contains a maximal family \mathcal{O} of mutually disjoint elementary neighborhoods. Since $c(X) \leq m$,

33. - RENDICONTI 1971, Vol. LI, fasc. 6.

^(*) Nella seduta dell'11 dicembre 1971.

card $\mathcal{O} \leq m$. For every $G \in \mathcal{O}$ let F(G) denote the set (of cardinality $\langle p \rangle$) of distinguished indices associated with G and let $B = \bigcup \{F(G) : G \in \mathcal{O}\}$. Then card $B \leq \max\{m, p\}$ and B is a support of $\bigcup \mathcal{O}$. It follows that B is a support of $\bigcup \mathcal{O}$. By the maximality of \mathcal{O} , $\bigcup = \bigcup \mathcal{O}$.

THEOREM 2. If the density of X_{α} is $\leq m^p$ for every $\alpha \in A$, then $c(X) \leq m^p$.

Proof. Let $\{G_{\xi} : \xi \in \Xi\}$ be a family of nonempty mutually disjoint open subsets of X. Without loss of generality we may assume that each G_{ξ} is an elementary neighborhood. Let $\Gamma \subset \Xi$ such that card $\Gamma \leq 2^{m^p}$. If $B = \bigcup \{ F(G_{\xi}) : \xi \in \Gamma \}$, then card $B \leq 2^{m^p}$. The family $\{ G_{\xi} | B : \xi \in \Gamma \}$ $(G_{\xi} | B = \{x | B : x \in G_{\xi}\})$ consists of nonempty mutually disjoint open subsets of X | B. By [I, Theorem I], X | B with the p^* -topology (p^* denotes the cardinal successor of p) has density $\leq m^p$. Thus X | B with the coarser p-topology also has density $\leq m^p$. Consequently, card $\Gamma \leq m^p$. Thus $c(X) \leq m^p$.

COROLLARY 1. If the density of X_{α} is $\leq m^{p}$ for every $\alpha \in A$, then every regular closed subset of X has a support of cardinality m^{p} .

COROLLARY 2. Suppose the weight of X_{α} is $\leq m^{p}$ for every $\alpha \in A$. Then for every pair U, V of disjoint open subsets of X, there are disjoint sets U', V', each of which can be represented as a union of a collection of cardinality $\leq m^{p}$ of elementary neighborhoods, and such that $U \subset U'$ and $V \subset V'$.

Proof. By Corollary I, \overline{U} and \overline{V} have supports B(U) and B(V) each having cardinality $\leq m^p$. Let $B = B(U) \cup B(V)$. Then card $B \leq m^p$. Let $U' = \pi_B^{-1}[U | B]$ and $V' = \pi_B^{-1}[V | B]$. Then U' and V' satisfy the thesis since the weight of X | B is $\leq m^p$.

THEOREM 3. Let f be a continuous function from X into a completely regular space Y of weight q.

a) If every regular closed set in X has a support of cardinality $\leq r$, then f has a support of cardinality $\leq \max{r, q}$.

b) If $c(X) \le m$, then f has a support of cardinality $\le \max\{m, p, q\}$

c) If the density of X_{α} is $\leq m^{p}$ for every $\alpha \in A$, then f has a support of cardinality $\leq \max\{m^{p}, q\}$.

Proof. a) Let $Y_0 = f[X]$ and embedd Y_0 in the Tihonov product of the collection $\{I_{\xi} : \xi \in \Xi\}$ where Ξ is an index set of cardinality q and $I_{\xi} = I = [0, I]$ for every $\xi \in \Xi$. For every $\xi \in \Xi$ and every $n \in \mathbb{N}$ (the set of positive integers) there is a countable open cover $\mathcal{C}_{\xi,n}$ of $(\pi_{\xi} \circ f)[X]$ by elements with diameters $\langle I/n$. Let $\mathscr{S}_{\xi,n} = \{(\pi_{\xi} \circ f)^{-1}[C] : C \in \mathscr{C}_{\xi,n}\}$ for every $\xi \in \Xi$, $n \in \mathbb{N}$ and let $\mathscr{S} = \bigcup \{\mathscr{S}_{\xi,n} : \xi \in \Xi, n \in \mathbb{N}\}$. Then card $\mathscr{S} \leq q$ and \mathscr{S} consists of open sets. Thus for every $U \in \mathscr{S}$ there is support B(U) of \overline{U} of cardinality $\leq r$. The set $B = \bigcup \{B(U) : U \in \mathscr{S}\}$ is a support of f of cardinality $\leq \max\{r, q\}$.

b) This follows from Theorem 1 and part a) above.

c) This follows from Theorem 2 and part b) above.

THEOREM 4. If $c(X_{\alpha}) \leq \aleph_0$ for every $\alpha \in A$ and X has the Tihonov topology, then every continuous function f from X into a completely regular space of weight q has a support of cardinality q.

Proof. This follows from Theorem 3a and a result of Sparks [6] that a regular open set in X has a countable support.

COROLLARY 3. If $c(X_{\alpha}) \leq \aleph_0$ for every $\alpha \in A$ and X has the Tihonov topology, then every continuous function from X into a separable metric space has a countable support.

The following theorem is an application of Theorem 3.

THEOREM 5. If X_{α} is a discrete space of cardinality m^{p} for every $\alpha \in A$ and X is not discrete (i.e., card $A > m^{p}$), then X is not normal.

Proof. Without loss of generality we may assume that each X_{α} consists of the same set of elements. Fix $a, b \in X_{\alpha}$ and let $F_a = \{x \in X : \text{ for } c \neq a, \text{ there is at most one } \alpha \in A \text{ with } x(\alpha) = c\}$ and $F_b = \{x \in X : \text{ for } c \neq b, \text{ there is at most one } \alpha \in A \text{ with } x(\alpha) = c\}$. It is easy to check that F_a and F_b are disjoint and closed.

If X is normal, then by Urysohn's Lemma there is a continuous $f: X \to [0, I]$ such that $f[F_a] = \{0\}$ and $f[F_b] = \{I\}$. By Theorem 3 c), f has a support B of cardinality m^p . Let φ be an injection of B into X_{α} and define $y, y' \in X$ such that $y(\alpha) = \varphi(\alpha) = y'(\alpha)$ for every $\alpha \in B$, and for $\alpha \in A - B$ let $y(\alpha) = a$ and $y'(\alpha) = b$. Thus f(y) = f(y'). However, this is a contradiction since $y \in F_a$ and $y' \in F_b$.

COROLLARY 4. If X is normal, then at most m^p -many factors X_{α} contain closed discrete subsets of cardinality m^p .

Remarks. Theorem 3 cannot be strengthened under present hypotheses even if Y is metrizable (a suitable modification of an example in [3, p. 120] will suffice).

Theorems 2 and 3 parts b) and c) are proved in [1] in the case that p has an immediate cardinal predecessor and Y is metrizable.

If X is equipped with the Tihonov topology, Theorems 1 and 5 and Corollaries 1, 2 and 4 are proved in [5] for separable spaces X_{α} , and Theorem 2 and Corollaries 1 and 2 are given in [4] for spaces X_{α} having density *m*. Also, a variation of Theorem 3 part *b*) is proved in [7].

References

- [1] ALAS O. T., Density and continuous functions I, «Rend. Accad. Naz. Lincei», 48, 129–132 (1970).
- [2] ALAS O. T., Density and continuous functions II, «Rend. Accad. Naz. Lincei», 49, I-4 (1970).
- [3] ENGELKING R., Outline of general topology, Amsterdam, New York, 1968.
- [4] MARTY R., m-adic spaces, «Acta Math. Acad. Sci. Hungar.», 22 (1971).
- [5] ROSS K. and STONE A., Products of separable spaces, «Amer. Math. Monthly», 71, 398-403 (1964).
- [6] SPARKS P., On products of spaces satisfying the countable chain condition, « Notices Amer. Math. Soc. », 18, 674 (abstract) (1971).
- [7] ULMER M., Continuous functions on product spaces, doctoral dissertation, Wesleyan University, 1970.