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Teoria dei controlli. — Swfficient Conditions for Controllability
of Nonlinear Systems. Nota @ di JeraLp P. DAvER, presentata dal
Socio G. SANSONE.

R1A8SUNTO. — Con T'uso del Teorema del punto fisso di Schauder si stabiliscono condi-
zioni sufficienti per la controllabilith e la totale controllability di un sistema nonlineare della
forma £ =A (¢,x)x + B (¢, x) u.

1. INTRODUCTION

In a recent paper Davison and Kunze [1] used a fixed point approach
to study global and local controllability of the nonlinear system

(1) E=Al,x)x+B@¢,x)u (# = dx/d?)

on I = [#3,#]. For global controllability it was assumed that A and B are
uniformly bounded on IXE”, E” is Euclidean 7-space. In this paper we
modify the Davison-Kunze approach to examine the (null) controllability
of system (1) under somewhat less restrictive assumptions on A and B. In
particular, we assume only local conditions on A and B in place of the
constrictive global conditions used in [1]. However, we shall assume an
additional condition on the behaviuor of B (#, x) near x = 0; namely,
|B(¢,x)| <c|x| locally in x.

In Section 2 we obtain sufficient conditions for controllability of system
(1) by examining the controllability of the linear system 4 =Al,2)x +
-+ B (¢, 2) # for bounded sets of continuous functions z. We use this result
in Section 3 to consider total controllability of system (1). Our result there,
under the additional hypothesis on B, improves the results on total controlla-
bility obtained by Davison and Kunze [1]. In this section we also consider
e-approximate controllability using piecewise constant controls. This type
of controllability is interesting in a number of applications.

2. CONTROLLABILITY

We shall assume that A and B are » X # and 7z X 7 matrix functions,
respectively, that are continuous in x for fixed # and piecewise continuous
in ¢ for fixed x. System (1) is said to be controllable if given any x, € E*
there is a piecewise continuous (control) function #: 1 E”™ such that the
solution of the initial value problem

| x=A¢,x)x+ B, x)uld
x(ty) =o0
satisfies x (¢;) = x;.

(*) Pervenuta all’Accademia il 13 settembre 1971.
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Let C[I] be the set of continuous E"-valued functions defined on I.
Then C [I] is a Banach space with the norm ||z|| = max |z (#)|. For positive
tel

constants N and 4 we define
Cx[l] = {z€C[I]: ]|zl <N},

2]l = max e=2¢=2 |z (7)],
Cx[[] ={z€C[I]:]s], < N}.

For each z€ C[I] let @ (¢, 2) denote the fundamental matrix solution of
x=A(t,2(@)x such that ® (4, 2) is the identity matrix and let

W, [#, ] =J<I)“1(.r,z) B(s,2(s)) B(s,2(s)T @1 (s,2)" ds.

t

Denote W, [#,,#] by W,.
If 2€ C[I] is such that the determinant of W,, det W,, is nonzero,
then define the control function 7, : I —E” by

(2) Uiy &) = B (2, 2(2)) (2,2 W, @7 (4, 2) 7.

For such z the solution, denoted by P(2), of the linear initial value problem
E=A@,z2@)x + B{,2(2) thr, )
x(l‘()) =0

satisfies x (¢) = x;, (cf. [2]). In fact
(3) Pl @) =@, z)f O L(s,2) B(s,z(s)) ttar, (5) ds.

THEOREM 1. System (1) s controllable if the following two conditions hold:
i) For eack N > o there exists a constant k = k(N) whick satisfies

B¢, n|< %]~
Jor all (t,x) such that t€1 and |x| < N.
ii) For each N > o there exists a constant ¢ = ¢(N)> 0 such that

inf det W, > ¢.
z€Cy[1]

Proof. Fix x; € E” and choose N > |x;|. Define the continuous operator
P:C[I1—=C[I] by equation (3). Since A.(¢,2(¢)) and B (¢,z (%) are
bounded (on I) uniformly in ze€Cy[I] it follows that ®(z,z2), ®71(z,2)
and W, are bounded uniformly in z € Cy[I]. By condition (ii) we therefore
have that W;, and hence #,,(?) (see equation (2)), is bounded uniformly
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in z € Cy [I]. Hence, using condition (i), there exists a constant & > o which
depends only on N and x; such that

¢
PO @I=d[1s0)]ds
£y
for all €I and each z € Cy[I]. Thus for each z € Cy[I] we have
:
e~ =t [P (2) ()] < dfe—‘i““u) |z (s)] ds
Zy

<zl
for all zel.

Let M = Ne~4¢:=@),  Then Cy[I] is a subset of Cy[I] and thus
Q={P(s):2€Ci[I]} is a subset of C¥ [I]. By the Arzeld-Ascoli Theorem
[3] the closure of the image set Q is compact. Hence by Schauder’s fixed
point theorem [3], the operator P has a fixed point 7 € C; [I]. The function 7
is clearly a solution of system (1) corresponding to a control function of the
form (2), (%) = o and Z(#;) = x;. This completes the proof.

Remark. As was pointed out in [1], a difficulty in the application of
Theorem 1 is in showing that condition (ii) is satisfied. A computable criterion
for this condition based on the controllability matrix of Silverman and
Meadows [4] can be adapted from [1, Theorem 3].

3. TOTAL AND e~APPROXIMATE CONTROLLABILITY

System (1) is said to be totally controllable if given any xz,, x; € E* and
any Z;€(%,#] there is a piecewise continuous function # : [ A
such that the solution of the initial value problem

E=AQl,x)x +B@,x)u()
% (¢0) = %o
satisfies x (¢;),= x;.

THEOREM 2. System (1) is totally controllable if the following two con-
ditions hold:

i) For each N > o there exists a constant h = & (N) whick satisfies
B¢, 2] < 4[]
Jor all (¢,x) such that t €1 and |x| < N.
i)’ For each N > o there exists a constant ¢ = ¢(N) > o such that

inf det W, [2,#]>¢
2 € Cyll]

Sor all ¢,¢ €1l.

22. — RENDICONTI 1971, Vol. LI, fasc. 5.
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Proof. Let xy,x and #; be given and choose % € (%, ¢;). - Define the
operator P':C[I] - C[I] by

P'la)(®) = ——f Ot (s,2) B(s, 2 (5)) 24, () ds,

where 2, () = B,z (@) O (¢,2)" (W, [4,2%])  xy. As in the proof of
Theorem 1, the operator P’ has a fixed point 2;. The function z; is a solution
of system (1) corresponding to the control function ., , 2, (%)) = x and
21 (5) = 0. Also as in the proof of Theorem 1, there is a function z, € C [I]
which is a solution of system (1) corresponding to the control function

e, (£) = B (2, 2 (0)T O (2, 29)T (W, [£22/]) 7 @7t , 20) 24,
23(fy) = 0 and 2, (¢;) = x;. Define the control function #:1—E” by
‘ § Uz, o (F) for z€[#y,12]

() = Z Uy, (2) for t€(t,¢].
Then the solution of

r1=Al,x)x +B{,x)u(®
x (Z0) = %o
satisfles x(¢;) = x;. This completes the proof.

The following result is on approximate controllability. Its proof follows
directly from Theorem 1 using continuous dependence of solutions on para-
meters (cf. [5, p. 18]). We say that system (1) is e—approximately controlla-
ble using piecewise constant controls if given any x; € E” there is a piecewise
constant function #:I-—>E” such that the solution of the initial value
‘problem

x=Al,x)x +B@,x)u(®
X (fo) = 0
satisfies |x (#) — x| <e.

THEOREM 3. Swuppose A and B are continuous on 1 X E”. If conditions
0) and ii) of Theorem I hold, then system (1) is e—approximately controllable
using ptecewise constant controls for every € > o.
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