ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Jerald P. Dauer

Sufficient Conditions for Controllability of Nonlinear Systems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **51** (1971), n.5, p. 313–316. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_51_5_313_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teoria dei controlli. — Sufficient Conditions for Controllability of Nonlinear Systems. Nota (*) di Jerald P. Dauer, presentata dal Socio G. Sansone.

RIASSUNTO. — Con l'uso del Teorema del punto fisso di Schauder si stabiliscono condizioni sufficienti per la controllabilità e la totale controllabilità di un sistema nonlineare della forma $\dot{x}=A\left(t,x\right)x+B\left(t,x\right)u$.

I. Introduction

In a recent paper Davison and Kunze [1] used a fixed point approach to study global and local controllability of the nonlinear system

(1)
$$\dot{x} = A(t, x)x + B(t, x)u \qquad (\dot{x} = dx/dt)$$

on $I = [t_0, t_1]$. For global controllability it was assumed that A and B are uniformly bounded on $I \times E^n$, E^n is Euclidean *n*-space. In this paper we modify the Davison-Kunze approach to examine the (null) controllability of system (I) under somewhat less restrictive assumptions on A and B. In particular, we assume only local conditions on A and B in place of the constrictive global conditions used in [I]. However, we shall assume an additional condition on the behavior of B(t, x) near x = 0; namely, $|B(t, x)| \le c|x|$ locally in x.

In Section 2 we obtain sufficient conditions for controllability of system (I) by examining the controllability of the linear system $\dot{x}=A(t,z)x+B(t,z)u$ for bounded sets of continuous functions z. We use this result in Section 3 to consider total controllability of system (I). Our result there, under the additional hypothesis on B, improves the results on total controllability obtained by Davison and Kunze [I]. In this section we also consider ε -approximate controllability using piecewise constant controls. This type of controllability is interesting in a number of applications.

2. CONTROLLABILITY

We shall assume that A and B are $n \times n$ and $n \times m$ matrix functions, respectively, that are continuous in x for fixed t and piecewise continuous in t for fixed t. System (I) is said to be *controllable* if given any $x_1 \in E^n$ there is a piecewise continuous (control) function $u: I \to E^m$ such that the solution of the initial value problem

$$\dot{x} = A(t, x) x + B(t, x) u(t)$$
$$x(t_0) = 0$$

satisfies $x(t_1) = x_1$.

(*) Pervenuta all'Accademia il 13 settembre 1971.

Let C [I] be the set of continuous E"-valued functions defined on I. Then C [I] is a Banach space with the norm $||z|| = \max_{t \in I} |z(t)|$. For positive constants N and d we define

$$\begin{split} & \mathbf{C}_{\mathbf{N}}\left[\mathbf{I}\right] = \left\{z \in \mathbf{C}\left[\mathbf{I}\right] : \|z\| \leq \mathbf{N}\right\}, \\ & \|z\|_{d} = \max_{t \in \mathbf{I}} e^{-d(t-t_{0})} \left|z\left(t\right)\right|, \\ & \mathbf{C}_{\mathbf{N}}^{d}\left[\mathbf{I}\right] = \left\{z \in \mathbf{C}\left[\mathbf{I}\right] : \|z\|_{d} \leq \mathbf{N}\right\}. \end{split}$$

For each $z \in C[I]$ let $\Phi(t, z)$ denote the fundamental matrix solution of $\dot{x} = A(t, z(t))x$ such that $\Phi(t_0, z)$ is the identity matrix and let

$$W_{z}[t,t'] = \int_{t}^{t'} \Phi^{-1}(s,z) B(s,z(s)) B(s,z(s))^{T} \Phi^{-1}(s,z)^{T} ds.$$

Denote $W_z[t_0, t_1]$ by W_z .

If $z \in C[I]$ is such that the determinant of W_z , det W_z , is nonzero, then define the control function $u_{zx_1}: I \to E^m$ by

(2)
$$u_{zx_1}(t) = B(t, z(t))^T \Phi^{-1}(t, z)^T W_z^{-1} \Phi^{-1}(t_1, z) x_1.$$

For such z the solution, denoted by P(z), of the linear initial value problem

$$\dot{x} = A(t, z(t)) x + B(t, z(t)) u_{xx_1}(t)$$

 $x(t_0) = 0$

satisfies $x(t_1) = x_1$, (cf. [2]). In fact

(3)
$$P(z)(t) = \Phi(t, z) \int_{t_0}^{t} \Phi^{-1}(s, z) B(s, z(s)) u_{zx_1}(s) ds.$$

THEOREM 1. System (1) is controllable if the following two conditions hold:

i) For each N > 0 there exists a constant k = k(N) which satisfies

$$|\operatorname{B}(t,x)| \le k |x|$$

for all (t, x) such that $t \in I$ and $|x| \le N$.

ii) For each N > 0 there exists a constant c = c(N) > 0 such that

$$\inf_{z \in C_{N}[I]} \det W_{z} \ge c.$$

Proof. Fix $x_1 \in E^n$ and choose $N \ge |x_1|$. Define the continuous operator $P: C[I] \to C[I]$ by equation (3). Since A(t, z(t)) and B(t, z(t)) are bounded (on I) uniformly in $z \in C_N[I]$ it follows that $\Phi(t, z)$, $\Phi^{-1}(t, z)$ and W_z are bounded uniformly in $z \in C_N[I]$. By condition (ii) we therefore have that W_z^{-1} , and hence $u_{zx_1}(t)$ (see equation (2)), is bounded uniformly

in $z \in C_N[I]$. Hence, using condition (i), there exists a constant d > 0 which depends only on N and x_1 such that

$$||P(z)(t)|| \le d \int_{t_0}^{t} |z(s)|^s ds$$

for all $t \in I$ and each $z \in C_N[I]$. Thus for each $z \in C_N[I]$ we have

$$e^{-d(t-t_0)} | P(z)(t) | \le d \int_{t_0}^{t} e^{-d(t-t_0)} | z(s) | ds$$

$$\le ||z||_{d}$$

for all $t \in I$.

Let $M=Ne^{-d(t_1-t_0)}$. Then $C_M^d[I]$ is a subset of $C_N[I]$ and thus $\Omega=\{P(z):z\in C_M^d[I]\}$ is a subset of $C_M^d[I]$. By the Arzelà-Ascoli Theorem [3] the closure of the image set Ω is compact. Hence by Schauder's fixed point theorem [3], the operator P has a fixed point $\bar{z}\in C_M^d[I]$. The function \bar{z} is clearly a solution of system (1) corresponding to a control function of the form (2), $\bar{z}(t_0)=o$ and $\bar{z}(t_1)=z_1$. This completes the proof.

Remark. As was pointed out in [1], a difficulty in the application of Theorem 1 is in showing that condition (ii) is satisfied. A computable criterion for this condition based on the controllability matrix of Silverman and Meadows [4] can be adapted from [1, Theorem 3].

3. TOTAL AND ε-APPROXIMATE CONTROLLABILITY

System (I) is said to be totally controllable if given any x_0 , $x_1 \in E^n$ and any $t_f \in (t_0, t_1]$ there is a piecewise continuous function $u: [t_0, t_f] \to E^m$ such that the solution of the initial value problem

$$\dot{x} = A(t, x) x + B(t, x) u(t)$$
$$x(t_0) = x_0$$

satisfies $x(t_f) = x_1$.

THEOREM 2. System (I) is totally controllable if the following two conditions hold:

i) For each N > 0 there exists a constant k = k(N) which satisfies

$$|\mathbf{B}(t,x)| \leq k|x|$$

for all (t, x) such that $t \in I$ and $|x| \le N$.

ii)' For each N>0 there exists a constant $c=c\left(N\right)>0$ such that

$$\inf_{z \in C_{N}[I]} \det W_{z}[t, t'] \ge c$$

for all $t, t' \in I$.

22. — RENDICONTI 1971, Vol. LI, fasc. 5.

Proof. Let x_0 , x_1 and t_f be given and choose $t_2 \in (t_0, t_f)$. Define the operator $P': C[I] \to C[I]$ by

$$\mathbf{P}'(z)\left(t\right) = -\int\limits_{t_{0}}^{t} \Phi^{-1}\left(s,z\right) \, \mathbf{B}\left(s,z\left(s\right)\right) \, u'_{zx_{0}}(s) \, \mathrm{d}s \,,$$

where $u_{zx_0}(t) = \mathrm{B}(t,z(t))^{\mathrm{T}} \Phi^{-1}(t,z)^{\mathrm{T}} (\mathrm{W}_z[t_0,t_2])^{-1} x_0$. As in the proof of Theorem I, the operator P' has a fixed point z_1 . The function z_1 is a solution of system (I) corresponding to the control function $u'_{z_1x_0}$, $z_1(t_0) = x_0$ and $z_1(t_2) = 0$. Also as in the proof of Theorem I, there is a function $z_2 \in \mathbb{C}[I]$ which is a solution of system (I) corresponding to the control function

$$u_{z_2x_1}^{''}(t) = \mathbf{B}(t, z_2(t))^{\mathsf{T}} \Phi^{-1}(t, z_2)^{\mathsf{T}} (\mathbf{W}_{z_2}[t_2 t_f])^{-1} \Phi^{-1}(t_f, z_2) x_1,$$

 $z_2(t_2) = 0$ and $z_2(t_f) = x_1$. Define the control function $u: I \to E^m$ by

$$u(t) = \begin{cases} u'_{z_1x_0}(t) & \text{for } t \in [t_0, t_2] \\ u''_{z_2x_1}(t) & \text{for } t \in (t_2, t_f] \end{cases}.$$

Then the solution of

$$\dot{x} = A(t, x) x + B(t, x) u(t)$$
$$x(t_0) = x_0$$

satisfies $x(t_f) = x_1$. This completes the proof.

The following result is on approximate controllability. Its proof follows directly from Theorem 1 using continuous dependence of solutions on parameters (cf. [5, p. 18]). We say that system (1) is ε -approximately controllable using piecewise constant controls if given any $x_1 \in E^n$ there is a piecewise constant function $u: I \to E^m$ such that the solution of the initial value problem

$$\dot{x} = A(t, x) x + B(t, x) u(t)$$

 $x(t_0) = 0$

satisfies $|x(t_1)-x_1|<\varepsilon$.

Theorem 3. Suppose A and B are continuous on $I \times E^n$. If conditions i) and ii) of Theorem 1 hold, then system (1) is ε -approximately controllable using piecewise constant controls for every $\varepsilon > 0$.

References

- [1] E. J. DAVISON and E. G. KUNZE, Some sufficient conditions for the global and local controllability of nonlinear time-varying systems, «SIAM J. Control», 8, 489-497 (1970).
- [2] R. E. KALMAN, Y. C. HO and K. S. NARENDRA, Controllability of linear dynamical systems, «Contrib. Diff. Eqs. », 1, 189–213 (1963).
- [3] L. W. KANTOROVICH and G. P. AKOLOV, Functional Analysis in Normal Spaces, Pergamon Press, Oxford, 1964.
- [4] L. SILVERMAN and B. D. O. ANDERSON, Controllability, observability and stability of linear systems, «SIAM J. Control», 6, 121–130 (1968).
- [5] W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, 1965.