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Matematica. — /Fuxed points in complete metric spaces . Nota
di SimeoNn REIcH, presentata ®” dal Socio B. SEGRE.

RIASSUNTO. — Vengono stabilite varie proposizioni che forniscono condizioni sufficienti
per 'esistenza di punti fissi, relativi a funzioni condensatrici a pit valori su di uno spazio

metrico, completo e limitato.
I. SOME DEFINITIONS

Let (X, d) be a metric space. In the sequel use will be made of the

following notations:
P(X) = {A|A is a nonempty subset of X},
BN(X)={A|A is a nonempty bounded subset of X },
CL(X) = {A|A is a nonempty closed subset of X},
CB(X)= {A|A is a nonempty closed and bounded subset of X},
C(X) ={A]A is a nonempty compact subset of X }.

A nonnegative function 7 defined on BN(X) will be called a measure
of noncompactness if it enjoys the following two properties:
(i) m (A) = o«= A is totally bounded,
(i) m@A)=o0 = m(AUB)=m(B),
where A and B belong to BN(X).
Here are three examples of such measures.
(i) m (A) =o if A is totally bounded, 7 (A) = 1 otherwise,
(i) a(A)=inf{r >0|A can be covered by a finite number of
subsets of X of diameter less than »} (see [4], p. 303),
(iii) 64(A) =inf {# >0|A can be covered by a finite number of
balls with centers in X and radius 7 }.
Here a ball with center ¥ and radius 7 is the set
By(y;n)={xeX|d(y,x) <r}.
A real function ¢ defined on X XX equipped with the cartesian product
topology will be called a nearness function if it is lower semicontinuous.
Here are three examples of such functions.
i) ¢gx,y)=o0 if x=y, ¢g(x,y) =1 otherwise,
(if) 4, the given metric,
(iii) any metric on X which induces a coarser topology than the one

generated by 4.

(*) This Note is a proper subset of the Author’s M. Sc. thesis which is being written now
under the supervision of Professors M. Reichaw and P. Saphar at the Department of Mathe-
matics of the Technion — Israel Institute of Technology, Haifa.

(**) Nella seduta del 13 novembre 1971.
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If A and B are nonempty subsets of X, we put
QA ,B)=inf{g(a,b)|a€A,beB},
H,(A,B) =max [sup{Q(e¢,B)|a€A},sup{Q(A,d]|beB}].

(In the last definition x is identified with {x }).

In general, both Q and H, may take the values + co and —oco. If
g = d we shall write D and H for Q and H, respectively. On CB(X) H is
actually a metric—the Hausdorff metric.

Let F: X —P(X) be a multi-valued function. We associate with it
a function Gr:P(X) - P(X) by defining Gp(A) = U{F(a) | a €A}, where
A € P(X).

F will be called #—condensing, » being a measure of noncompactness,
if it satisfies

(1) A€eBNX)Am(A) >0 = m (Gr(A) <m(A).
It will be called g—contractive, ¢ being a nearness function, if it satisfies

(2) r=4=y = H,(F(x),F(y)) <g(x,y).

2. A FIXED POINT THEOREM

THEOREM 1 (Cf. [2], p. 506). Let (X ,d) be a bounded complete metric
space.  If a continuous F:(X ,d) — (CB(X),H) is m—condensing as well
as g—contractive, then it has a fixed point.

Progf. Let x€ X and consider A= {x} U {Gr@x)|n=1,2,---}.
Clearly A = {x} UGr(A). Hence 7 (A) = Gg(A) = o. Since X is complete,
the closure of ‘A, which will be denoted by K, is compact. It is not difficult
to see that the continuity of F implies the invariance of K under Gr. Define
a real function p on K by () = Q(», F(»)), y € K. p is lower semicon-
tinuous. Therefore p(2) = inf { p(») |y € K} for some z € K. There exists
c€F(2) such that p(¢) =¢(z,¢). If c==2 then p() =Q(c,Fl)) <
<H,(F(2), Fl©)) <g¢(2,¢) — a contradiction. Consequently, ¢ =2z is a
fixed point of F.

3. AN APPLICATION

In order to present an application of this Theorem we need several pre-
liminary notions.

Let £ be nonnegative. A multi-valued function F: X — P(X) will be
called a/4-set—contraction with respect to a measure of noncompactness 7z
if it satisfies;

(3) m (Gr(A)) < km(A) , A€eBNX).

Let » pe fixed. If F is a A-set—contraction, we put = (F) =
inf{%Z]|F is a A-set-contraction }.
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Assume now that F:X—%C(X). Then Gy:C(X) —C(X) for every
n=1 ([6], p.157). Therefore we can define F*: X —C(X) by F"(x) = G (x).
Note that G, = G;. If, in addition, F is a A-set-contraction, F” is a
#'—set—contraction. One can see that »(F) = lim [ (F")]"” exists and equals
inf ([ (EN" [ =1,2,---} (CE. [8], p. 476).

THEOREM 2. Let (X ,d) be a bounded complete metric space. Let a
k—set—contraction F: (X ,d) - (C(X),H) be continuous and g-contractive.
If »(F)< 1, then ¥ has a fixed point.

Proof. For any 0<z< 1/7(F) define a new measure of noncompactness
by e, (A) = 2, m(Gi(A) z, ACX. Since #,(Ge(A)) < m,(A)fz, F is

mg—condensmg for z sufficiently near 1/7(F). The result now follows by
Theorem 1.

COROLLARY 1. Let (X,d) be a bounded complete metric space, and let
F: X — C(X) be d—contractive. If for some natural n

@ HE (@x), F'(9) < #d(x,),
where 0 < k<1, then F has a fixed point.
This is a partial generalization of a result due to Nadler, Jr. ([7], p. 479).

4. ANOTHER FIXED POINT THEOREM

A generalized metric has all the properties of an ordinary metric except
that it may be infinite (see [5], p. 541). For example, if (X, d) is a metric
space, (CL(X), H) is a generalized metric space.

THEOREM 3 (Cf. [3], p. 465). Let (X ,d) be a complete metric space. Let
the continuous F : (X ,d) — (CL(X),H) be & <condensing.  If there exists
a bounded sequence {x, %oy CX such that D(xn , F(xn)) ——> 0, then F has a
fixed point.

Proof.  Put A = {x,}., and consider, for any positive ¢, the set
B={2€X|D(z,Gr(A))<e}. There is a natural number N which satisfies
{=x, }oo x C B. It follows that 4x(A) < éx(B) < 6x(Gr(A)) + . Hence
bx (A) < 6x(Gx(A)), so that the closure of A is compact. Let {y,}"" C{x,},
be a convergent subsequence with limit y. y is a fixed point of F because
Dy F(y) <d(y,y) + D, FO) < d(y,9) + D, Fy) +
+H (F(5,), F(5) SO

Observe that é ~condensing can be replaced by ‘ g—condensing
in the statement of the Theorem.

COROLLARY 2 (Cf. [7], p- 484). Let (X ,d) be a bounded complete metric
sﬁace let Fo:(X,d) - (CL(X),H) be continuous and b —condensing, and
let F X —CL(X) have a fixed point x, for each n>1. If the sequence
{F,}, converges uniformly to ¥, then a subsequence of {x,}
to a fixed point of Fy.

ne1 converges
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5. AN APPLICATION

THEOREM 4. Let (X ,d) be a bounded complete metric space. Suppose

that k: (0,00) - [0,1) and that for positive » hm sup R <1 If
F: X —-CX) satzsﬁes
(5 HFE®),F) < £d@,y)dx,5),

where x =y, then it has a fixed point.

Proof. Consider an AC X with 6 (A) = R >o. Positive ¢(R) and
S(R) <1 can be found such that £2() <S for all R—e <z<R +¢

and R—e< (R+4+¢)S=7r <R. Since ACLn)BX(x,-;R—I—e) where
i=1
{x;¥;=1 is a finite subset of X, this means that Gp(A) C L”) Bexy (F(x)) ;7).
=1
F(x,) C L3 Bx(yj(’), 1/2 (R—-r)) for some finite subset {yj@ };il of X, 1<i<n.

It follows that Gy (A)C U U Bx( . 1/2(R+7)), so that F is by—condensing.

i=1j=1

Let xy€ X and let x; € F(x;). We can assume that x; 5=x,. Choose
25 € F(xy) such that & (x;,x) < H (F(xy) , F(x) < 2(d (%g, x1)) d (x4 , x1).
In this manner, assuming that x,.;==%,, we can construct inductively
a sequence {x,}  which satisfies x,€ F(x,—;) and d(x,, %) <

< kld (ot %) d (Hner, x) < d(Xye1, %x,), m=1,2,--. Where
L = lim & (%, , %,11) positive, one would obtain L < limsup £2()) L < L,
# —>00 t— L

an impossible situation. Hence L. =o. At this point, an appeal to Theorem 3
yields the desired conclusion.

This proposition can be considered a generalization of a result of
Browder’s ([1], p. 28).
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