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RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI
Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 novembre 1971

Presiede 1] Presidente BENIAMINO SEGRE

SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Properties of two cardinal topological invariants.
Nota di Oreria Teresa Aras, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Si stabiliscono proprieta di due invarianti topologici riferiti, rispetti-
vamente, alla intersezione di una collezione d’insiemi aperti ed ai ricoprimenti aperti local-
mente finiti di uno spazio.

We shall consider some properties of two cardinal topological invariants
related, respectively, with the intersection of a collection of open sets and
with the locally finite open coverings of a space.

In this Note all topological spaces are nonempty Hausdorff spaces. For
every set Z,|Z| denotes the cardinal number of Z.

Let X be a topological space.

DEFINITION 1. p(X) is the least cardinal p > R, such that every locally
finite open covering of X has cardinality less than p.

DEFINITION 2. Suppose that X is nondiscrete. 7 (X) is the least car-
dinal number 7 for which there is a collection (of cardinality =) of open

subsets of X whose intersection is not an open set.  (X) is called the
index of X.

ELxamples: 1) Suppose that X is completely regular. X is pseudocompact

if and only if p(X) = §,.
2) Suppose that X is a uniformly locally compact space.
Then p (X) = Ry or p (X) is the successor of an infinite cardinal p (in this

case, X is the union of p compact subsets of X).
Let X and Y be topological spaces.

(*) Nella seduta del 13 novembre 1971.
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THEOREM 1. If f:X =Y is an onto continuous jfunction, then
p(Y) < p(X).
THEOREM 2. p(X X Y) = p(X) p(Y), where X XY is the product space.

Proof. 1t follows from the fact that p (X) p (Y) is the maximum of the
set {p (X), 2 ()}
THEOREM 3. If Y is compact, then p (X XY) = p (X)p (Y).

Proof. Let C be a locally finite open covering of X X Y. For each x€X
there is an open neighbourhood U, of x such that U, XY intersects only
finitely many members of C. For each x € X put

C.={WeC|{x}xYNW==p} and A={C,|xeX}.

Now, for each B € A put

TB:%teX|{t}><YC vzlnn prz,

ZeB ZeB
where pr: X XY — X is the projection. (Tg)sea is a locally finite open
covering of X; thus |A| < p (X). But since B is finite for every B €A
and C = U B we have that |C| < p(X). The proof is completed by vir-

BCA

tue of Theorem 2. ,
THEOREM 4. If p(X) >Ry there is a paracompact space Y such that

P XXY)>p(X)p (V).

" Proof. Let (S,) be a locally finite open covering of X such that
S,— (5;U---US,_1) is nonempty for each natural number » > 2. Let m
be the cardinal supremum of the set {y;,- -, %,, -}, where y; = 2?®,
Yuy1 = 2"7 for every n>1. Let Y be a set of cardinality » and fix a
point 6 €Y. In Y we consider the topology defined below:

1) {z} is open for every z€Y —{4};
2) UCY is a neighbourhood of 4 if and only if 4€U and | X—U| <.
For each natural # > 1 we choose a discrete open covering of Y, G,,
of cardinality y,. The set 8 {S,xT|TeG,} is a locally finite open
covering of X XY of cardinafi:;f m (= p (Y)).
- COROLLARY. Swuppose that X is paracompact. X is compact if and only
if p(XXY)=p(X)p(Y) for every nonvoid paracompact space Y.

THEOREM 5. If X is regular, m (X) > Ry and every closed subset of X
- has a fundamental system of meighbourkoods of cardinality not greater than
m (X), then X is normal and m (X)-paracompact.

Proof. The normality is a consequence of the facts that X is regular,
every closed subset of X has a fundamental system of neighbourhoods of
cardinality not greater than » (X) and every subset of X of cardinality less
than z (X) is closed (has no accumulation point).
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Since 7 (X) > 8y and X is normal, every open subset of X is the union
of at most 7 (X) open-closed subsets of X and, thus, the 7 (X)-paracom-
pactness follows easily. ~

THEOREM 6. [If X is normal and m (X) = p (X) > Ry, then every closed
subset of X which is the intersection of at most m (X) open subsets of X has a
Sundamental system of neighbourhoods of cardinality not greater than m (X).

Proof. Denote by I the set of all ordinal numbers smaller than the first
ordinal number of cardinality 7 (X). Let F be a closed subset of X which
is the intersection of at most #2 (X)) open subsets of X. (If F is open the result
is trivial). We can suppose that F = ﬁ A,, where each A, is open-closed

(because X is normal) and A; C A; Whenever 7 >j. Let W be an open-closed
nelghbourhood of F and consider the set C ={U,—(UsUW)|7€el—{0}},
where 7’ is the ordinal successor of 7 and U; = ﬂ A;. Cis adiscrete collectlon

of open-closed subsets of X; so |[C| <m (X) and there is 4 €1 such that
U;—Us UW)=g for every 2> £'. It then follows that Uy C W. Finally
we have that {U,|7€I—{o}} is a fundamental system of neighbourhoods
of F.

THEOREM 7. If every closed subset of X is the intersection of at most m (X)
closures of open subsets of X containing it and every subset of X of cardi-
nality m (X) has an accumulation point, then X is normal.

Proof. Let I be the set of all ordinal numbers less than the first ordinal
number of cardinality » (X). Let F and K be two nonempty disjoint closed
subsets of X. There are two fam1hes if open subsets of X, (A));e1 and (B))e1,
such that:

1) FCA;,CX—K and KCB,CX—F for every 7€l

2) F=nNA, and K=n B;;
. i€l i€l
3) A, CA; and B,CB; whenever 7> 7.

It suffices to prove that for some 7€1I,|A,N B;| <m (X); then A,N B,
is closed and FCA,;— B, and KCB;—A;. On the contrary, let us sup-
pose that forieach 7 € I we choose (by induction) an element ¢; € A; N B, —
—{¢|/<i}. Theset {¢ |i€l} has cardinality »# (X) and does not admit
an accumulation point (the accumulation point would belong to F and K),
which is' a; contradiction.

A part of this material appeared in [1], which was supported by the Conselho Nacional
de Pesquisas.
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