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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fìsiche, matematiche e naturali

Seduta del 13 novembre 19 J i  

Presiede i l  Presidente B eniamino S egre

SEZIONE I
(M atematica, m eccanica, astronom ia, geodesia e geofìsica)

Matematica. — Properties o f two cardinal topological invariants. 
N o ta  di O f e l i a  T e r e s a  A la s ,  p re s e n ta ta  dal Socio B. S e g r e .

R iassunto . — Si stabiliscono proprietà di due invarianti topologici riferiti, rispetti­
vamente, alla intersezione di una collezione d ’insiemi aperti ed ai ricoprimenti aperti local­
m ente finiti di uno spazio.

W e shall consider some properties of two cardinal topological invariants 
related, respectively, with the intersection of a collection of open sets and 
with the locally finite open coverings of a space.

In  this Note all topological spaces are nonem pty H ausdorff spaces. For 
every set Z , | Z | denotes the cardinal num ber of Z.

L et X be a topological space.

D e fin it io n  i. p ( X )  is the least cardinal p  >  such th a t every locally 
finite open covering of X has cardinality  less than  p.

DEFINITION 2. Suppose th a t X  is nondiscrete. m ( X ) is the least car­
dinal num ber m  for which there is a collection (of cardinality  ni) of open 
subsets of X whose intersection is not an open set. m  (X) is called the 
index of X.

Examples'. 1) Suppose th a t X is completely regular. X is pseudocom pact 
if and only if  p  (X) — .

2) Suppose th a t X is a uniform ly locally compact space. 
T hen  p  (X) == N0 or p  (X) is the successor of an infinite cardinal p  (in this 
case, X is thie union of p  com pact subsets of X).

L et X and Y be topological spaces.

(*) Nella seduta del 13 novembre 1971.
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Theorem i . I f  f  : X -> Y is an onto continuous function , then 
P (Y) <  p  (X).

Theorem 2. p ( X x Y )  >  p  (X) p  (Y), where X X Y is the product space.

Proof. It follows from the fact th a t p (X) p (Y) is the m axim um  of the 
set {p  (X) , p  (Y)} .

Theorem 3. I f  Y  is compact, then p  (X X Y) =  p  (X) p  (Y).

Proof. Let C be a locally finite open covering of X X Y. For each j g X  
there is an open neighbourhood XJx of x  such th a t U* X Y intersects only 
finitely m any m em bers of C. For each x  e X. put

C , - { W e C | { j } x Y n W ^ 0 }  and A  =  { C , | ^ e X } .

Now, for each B e A  put

Tb =  i t e  X I { t}  X Y C U zj o n  p r Z ,
' z e  B ‘ Z €  B

where pr  : X X Y -> X is the projection. (Tb)bca is a locally finite open 
covering of X; thus [ A  | <  p  (X). But since B is finite for every B e A  
and C =  U B we have th a t |C | < p ( X ) .  T he proof is completed by vir-

B €  A
tue of Theorem  2.

Theorem 4. I f  p  (X) >  No there is a paracompact space Y  such that 
p ( X x Y )  > fi (X) p  (Y).

Proof. L et (Sn) be a locally finite open covering of X such tha t 
S „ —  (Sx U • • • U S*_i) is nonem pty for each natu ral num ber n >  2. L et m  
be the cardinal suprem um  of the set { y 1 , • • •, y n , • • •}, where j/1 =  2i>(X), 
y n+i — 2 ^  for every n >  1. Let Y be a set of cardinality  m  and fix a 
point b e Y. In  Y we consider the topology defined below:

1) {2} is open for every z G Y —  {Y};
2) U C  Y is a neighbourhood of b if and only if b e U  and | X — U | <im. 

For each natu ral n >  1 we choose a discrete open covering of Y, Gn ,
00

of cardinality  y n . The set u  {S^ X T  | T  e Gw} is a locally finite open
I n  =  1

covering of X X Y of cardinality  m ( =  p  (Y)).

COROLLARY. Suppose that X is paracompact. X is compact i f  and only 
i f  p  (X X Y) — p  (X) p  (Y) fo r  every nonvoid paracompact space Y .

Theorem 5. I f  X is regular, m  (X) >  N0 and every closed subset of X 
has a fundam ental system of neighbourhoods of cardinality not greater than 
m  (X), then X is normal and m  ('X)-paracompact.

Proof. T he norm ality  is a consequence of the facts th a t X is regular, 
every closed subset of X has a fundam ental system of neighbourhoods of 
cardinality  not greater th an  m  (X) and every subset of X of cardinality  less 
th an  m  (X) is closed (has no accum ulation point).
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Since m ( X )  >  N0 and X is norm al, every open subset of X is the union 
of at m ost m  (X) open-closed subsets of X and, thus, the m  (X )-paracom - 
pactness follows easily.

THEOREM 6. I f  X  is normal and m  (X) =  p.(X)  >  N0, then every closed 
subset of X which is the intersection of at most m  (X) open subsets of X has a 

fundam ental system of neighbourhoods of cardinality not greater than m  (X).

Proof. Denote by I the set of all ordinal num bers sm aller th an  the first 
ordinal num ber of cardinality  m  (X). Let F  be a closed subset of X which 
is the intersection of at m ost m  (X) open subsets of X. (If F  is open the result 
is trivial). W e can suppose th a t F  == D A,-, where each A f- is open-closed

i € I
(because X is norm al) and A- C Ay whenever i  >  j .  Let W  be an open-closed 
neighbourhood of F and consider the set C =  {Lb —  (U*/ U W) | i 6 I •— {o}},
where i' is the ordinal successor of i  and Lb =  n Ay . C is a discrete collection

j< i
of open-closed subsets of X; so |C | < m (X) and there is k e I such tha t 
u, —  (Ufv u  W) =  0  for every i  >  k!. It then follows tha t C W. F inally 
we have th a t {Lb | 1 6 I —  {o}} is a fundam ental system of neighbourhoods 
of F.

THEOREM 7. I f  every closed subset of X  is the intersection of at most m  (X) 
closures of open subsets of X  containing it and every subset of X  of cardi­
nality m  (X) has an accumulation pointi then X  is normal.

Proof. L et I be the set of all ordinal num bers less than  the first ordinal 
num ber of cardinality  m  (X). Let F and K be two nonem pty disjoint closed 
subsets of X. T here are two families if open subsets of X, (A,-),-e i and (B,-),-e i , 
such that:

I) F C A,- C X — K and K C B,- C X — F

2) F =  n  Ä, and K =  n B,.;ï'€I i e i

3) A,. C Ay and B,CBy

for every i e l ;

whenever i > y .

It suffices to prove th a t for some i e I , | A,- D B*-1 <  m  (X); then A,- n B,- 
is closed and F  C A,- —  B2- and K C B,- —  A t-. On the contrary, let us sup­
pose th a t for i each 2 € I we choose (by induction) an element e A,- n B ,— 
—  { cj  I j <  i } • The set [c{ | i e 1} has cardinality m( X)  and does not adm it 
an accum ulation point (the accum ulation point would belong to F  and K), 
which is a; contradiction.

A part of this material appeared in [i], which was supported by the Conselho Nacional 
de Pesquisas.

R e f e r e n c e

[1] O. T. A las, Sobre urna extensäo do concetto de compacidade e suas aplicaçoes, Thesis, 1968.


