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Geometria differenziale. — Hyperasymptotic and hypernormal
congruences in a subspace of a Finsler space. Nota @ di CHANDRA
Man1 Prasap, presentata dal Socio E. Bomprani. ‘

RIASSUNTO. — Sono state definite da Mishra [2, 3] le curve ipersintotiche ed ipernormali
di una ipersuperficie riemanniana, e da Singh [5, 6] quella di un sottospazio finsleriano.
In questo lavoro, queste curve sono state generalizzate ulteriormente in modo di dare le
congruenze ipersintotiche ed ipernormali del sottospazio finsleriano. Inoltre viene ricavata
una condizione necessaria e sufficiente perché queste siano congruenze d’unione secon-
daria [7].

1. INTRODUCTION

Let a subspace F,, 2" =2"(u*) i=1,2,--n a=1,2,--,m be
immersed in an #-dimensional Finsler space F,. Consider a curve
C:x'=x%(s) of the subspace. The components x'/= dx’/ds and 2/*= dz*/ds
of the unit tangent vector to C are related by 2"/ = B, 4% where B, = ax’/au".
A line-element (2% %) is thus determined at a point of C. All the quantities
in our discussion are considered for this line-element.

The metric tensors gos (#,#') and g&;; (x,x") of F,, and F, respectively
are related by

(1.1) Lap (0, 2') = g;; (x,x") By Bh.
There exists a set of vectors nz,; (x,2),6=m +1,---, %, normal to

the subspace and are called secondary normals. These are given by the
solutions [4]

(1.2) 7 Bl =&, (x,x) ny Bl =o
(1.3) & (x,x) nzf,ﬁ 16i = Su Yy [no summation on v]
and
(1-9) £ (%, 1) iey Wiy = 1.
Let a set of 72— m linearly independent vectors W, (x, '), 6=m~+1,- -, %

define #» — m congruences of curves which are such that exactly one curve
of each congruence passes through each point of the space. At a point P
of the subspace, we write

(1.5) Uiy = Loy (0, u') By + Z Doy (2, ) 25

(*) Pervenuta all’Accademia il 12 ottobre 1971.
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Suppose that the vectors u,za) with 7 linearly independent vectors of F,, form
a set of # linearly independent vectors in F, which is possible when | I'y) | = 0.

Consider the contravariant components A’ (x,z') of a congruence of
curves which is not necessarily a member of the set of congruences defined
by (1.5). At a point of the subspace, it may be expressed as

(1.6) %:ﬁB;+;C®%{
and it satisfies
(1.7) gy, X)NW =3V =

The covariant derivative of (1.6) with respect to #«f in the direction of C is
given by [7]

(1.8) -%:Wm+§mwx

where

(1.9) W= Z Cop Al 2

and |

(1.10) Dy = Qg (0, ) " o + M + Z Cioy Nsp #°

The quantities Qs are called secondary second fundamental tensors
and Ay and Ny are defined in [7].

In the following sections, the hyperasymptotic and hypernormal con-
gruences  are introduced in F,, and their properties discussed.

2. HYPERASYMPTOTIC CONGRUENCES

In a Riemannian space V,, the hyperasymptotic curves were defined
as follows.

Let dx* /ds ¢ and b, 9 =1,2, -+, (2 —2), be the tangent vector,
the prmClpal normal vector and (7% — 2) binormal vectors (with respect to
V,) of a curve C of the subspace V,,

DEF’;INITION (1). A curveof V, is a hyperasymptotic curve with respect
to the binormals b(@ and relatlve to }1.(0) (x) if the geodesic surface determined
by dx/ds and &, contains .

DEFINITION (2). The scalar
K =&, @) vy 0’

is called the hyperasymptotic curvature (of the curve) relative to p.()(x>
If K = o along a curve, it is a hyperasymptotic curve of V.,

15. — RENDICONTI 1971, Vol. LI, fasc. 3-4.
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The first definition is due to Mishra [3] and the latter is due to Amur [1].
With the use of d-differentiation [4], we are unable to ascertain the existence
of #— 2 binormals in the Finsler subspace. However, Singh [6] has intro-
duced the existence of 7z — 2 vectors in Finsler space which obey the conditions
satisfied by the 7 — 2 binormals of the Riemannian space and thereby defined
the hyperasymptotic curves in the Finsler space.

The latter definition may be used to have a direct generalization of hyper-
asymptotic curve in Finsler space and, therefore, the hyperasymptotic con-
gruence in Finsler subspace is introduced. It may be noted that the latter
definition is a consequence of the former one.

DEFINITION (2.1). The scalar Ky, defined by

3
(2.1) K(c)h gu (x, x") V“(G) 55

is called the hyperasymptotic curvature of the congruence A’ on F,,. A con-
gruence X" is said to be a hyperasymptotic congruence relative to the congru-
ences y.(c) if at each point of a curve of F,, Ky, =o0. Its differential
equation, therefore, is given by (simplifying (2.1) and equating to zero),

(2.2) 8up Uiy W 23 Ty Dy by = .

Particular Cases.

(2) If the components of the vector A’ are tangential to the subspace,
we have
3¢

C(V):O y Wu:—-SF

(2.3)

S du® v
Dy = Qpy — -7
and, ‘therefore, A’ = B #* and the equation (2.2) takes the form
(2.4) 8o /<c> + Z Loy Qo o 4y = 0.

This is the equation of a hyperasymptotic (or hyperconjugate) curve of the
vector-field X’ tangential to the subspace (relative to ().

(¢2) If the components of the congruence A’ are tangential to a curve
C:x* =" (s) of the subspace, we have 2" = x’% and therefore, the equation
(2.2) reduces to
dwr do®

) * ] .
(2:5) 8up L + 20 Tiony Qo —§— ~g— Yo = 0.
v

The equation (2.5) is the differential equation of the hyperasymptotic curves
of the subspace F, relative to W [6].
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THEOREM (2.1). If the congruences Wy are not normal to the subspace,
the congruence N is a hyperasymptotic congruence relative to Uy at the points
of a h—geodesic of F,,.

Proof. Since I'cy=o0 and /g == o0 for all v, the equation (2.2)
reduces to

Lap Loy WP = 0

which is identically satisfied for W* = o (A-geodesic) [7].
The equation (2.2) may be written as

(2.6) Koys = &ag Ly W* + Z‘ Loy M)
where
.7 My = 4+ Dy Y-

The quantity M, is called the hyperasymptotic curvature of A’ relative to the
secondary normals 7. Now the congruence A’ is said to be a hypera-
symptotic congruence relative to the vectors n?\,; if

M(V) = 0.

Consider a variety V generated by the secondary normals 7421; and sup-
pose that all the % — » congruences W, lie in this variety. We, therefore,
have /3, = o for all ¢ and the equation (2.2) reduces to

©@ q

(2.8) K(q)h = Z | My -

Now we shall prove the following

THEOREM'(z.z). A necessary and sufficient condition that the congruence N
is @ hyperasymptotic congruence relative to all m—m congruences Wy of the
variety N is that it is the hyperasymptotic congruence relative to each secondary
normal.

Proof. 1If A s hyperasymptotic relative to each secondary normal, we
have

Mg = o for all v
and therefore, V
Kes=o0 for c=m-+1, -, %.
Conversely, if Ke)s = o for every o, the equation (2.8) give

2 Doy Mgy, = 0.
-~ :

15*
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As the vectors U, are linearly independent, we have |I'gy| == o0 and,
therefore,

M(\,) = 0.

COROLLARY (2.1). If N is a hyperasymptotic congruence relative to all
n — m congruences kg, of the variety N, then it is a hyperasymptotic congruence
relative to any other congruence of the variety V.

Proof. The proof follows from theorem (2.2) and equation (2.8).

THEOREM (2.3). A necessary and swficient condition that N be a hyper-
asymptotic congruence relative to all oy of the variety N at the points of a
curve C of F,, is that the curve be an asymptotic line of the congruence \.

Proof. If N is a hyperasymptotic congruence relative to Wi of the
variety V, we have K = o and therefore,

(2.9) Z v Dy kP(\,) =0 forr c=m+1, -, n

Since u{ are linearly independent, we have |, |==0. The equation (2.9)
then gives (since ) =F0)

(2.10) Dy =o0 for all v

b

which gives the asymptotic line of the congruence 2 [8].
Conversely, if (2.10) are given, the equations (2.9) are identically satisfied.

3. HYPERNORMAL CONGRUENCES

Mishra [2] defined the hypernormal curve in a Riemannian hypersurface.
A consequence of which has been adopted by Amur [1] where he defined that
a curve of V,, is a hypernormal curve of a vector-field » if the congruence
X (%) in V,,; through a point P of V, is orthogonal to the direction of vector-
field at that point.

In view of the above definition, we introduce the concept of hypernormal
congruence of a Finsler subspace.

 DEFINITION (3.1). If a scalar H,) defined by
(3.1 He =& (2, %) o ¥

vanishes identically at the points of a curve on F,,, the congruence X’ is said
to be a hypernormal congruence. Hence the equation of the hypernormal
congruence is given by

(3.2) Lo (0, u) £ 0y + Z Co) Tiow ¥y = 0.
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When we consider any general congruence of curves (J-f(,), the relation
(3-2) is not satisfied at all points of F,,. However, there may exist certain
curves on F, at each point of which the relation is satisfied.

Particular Cases.

() Let the components of A* be tangential to the subspace, then we
have #*= 0 and Cy = o0 and the equation (3.2) reduces to

(3-3) ‘ L% ligy = 0.

The equation (3.3) may identically be satisfied at each point of certain curves
on F,. These curves are called the hypernormal curves of the vector-field
A’ tangential to the subspace.

(#7) Again if ) = da?/ds, the equation (3.2) takes the form
n dee®
(3-4) £ (u, ') =3 Joy = 0.

The equation (3.4) is the equation of a hypernormal curve of the subspace
F,, relative to (k) defined by Singh [6]. Thus the equation (3.2) is a genera-
lization of the hypernormal curve of the subspace F,,.

THEOREM (3.1). If the vectors y.fo), c=m+ 1, --,n lic in a variety
spanned by the secondary normals and the components of X' are tangential to
F,., the congruence XN is the hypernormal congruence relative to all n—m
congruences.

Proof. Since /g =o for all ¢ and Cyy=o0 for v=1m +1,---, 7, the
equation (3.2) is identically satisfied for all /5 and 6 =m +1,---, .

4. UNION, HYPERASYMPTOTIC AND HYPERNORMAL CONGRUENCES

In this section, we shall consider the case when the hyperasymptotic
and hypernormal congruences coincide with the union congruence.
In the Theorems given below we shall be using the following conditions:

(¢) Let the vector )’ be not parallel (along the curve C) in the enve-
loping space F, and

(¢2) 'that the projection of the first curvature vector of A’ vanishes in
its own direction.

THEOREM (4.1). A wnecessary and suficient condition that the union
congruence relative to (g is the hyperasymptotic congruence (relative to the
same congruences) is that Wy lie in the direction of N.

Proof. The union congruence relative to [ is given by [71s

i i N
<4I> Yo) = Qo) A - é(c) Yl
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Since 8X'/8s <=0 and (3\/8s5)-}; = o, multiplying (4.1) by g (x, x) S¥[3s, it
reduces to

Noi O AW
(4.2) 8 (%, %) o) 57 = b0 &1j (W) (W) '

From (4.2) and (2.1), it follows that K, = o if and only if 4, = o which
completes the proof.

THEOREM (4.2). A wnecessary and sufficient condition that the wumion
congruence relative to “(c) is the hypernormal congruence (relative to the same

congruences) is that W lie along the first curvature vector of N (with respect
to F,).

Proof. The equation of the union congruence relative to Ul is given
by the equation (4.1). This equation gives

4-3) £ (¥, 2) oy ¥ = aw)

since (3°/8s) A; = o by assumptlon Now Hey = &7 (x , ') iy ¥ = 0 implies
that @) = 0 so that () lies along 8 /8s.

Conversely, if u(c) lies along &)°/3s, it implies that @@ = o which from
(4.3) implies that Hy = o. This proves the Theorem.

The Author is grateful to Dr. K. B. Lal and Dr. U. P. Singh for their
kind help in the preparation of the paper.
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