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Geometria differenziale. — Asymptotic lines in a hypersurface
of @ Finsler space. Nota @ di S. C. SrivasTAvAa e R. S. Sinua,
presentata dal Socio E. BomPrani.

RIASSUNTO. — Hayden [1] ha studiato le linee asintotiche di ordine p in un sottospazio
di uno spazio riemanniano ed ha ottenuto una espressione per la curvatura %, in qualsiasi
punto di una linea asintotica di massimo ordine. In questo lavoro gli Autori hanno voluto
‘studiare le medesime proprieta per una ipersuperficie di uno spazio di Finsler.

1. INTRODUCTION.

Let us consider a Finsler space F, of # dimensions referred to a local
coordinate system x* (henceforth the Latin indices 7, 7, £ vary from I to ),
whose metric function F(x?, x') satisfies the conditions usually imposed upon
such a function ([2] Ch. L.). The metric tensor of F, is defined by

1 N}
g, (5, 7) =S 4G (x,2) O

and since F (x% x'%) is positively homogeneous of degree one in x%4 the

tensor Cyp = % 3 £; (x, x") satisfies the identities
Cip(x,2) 2 " =Cy(x,2) 27 =Cy(x,2) 2% = 0.

A hypersurface F,_; of F, may be represented parametrically by the
equations

(1.1) %t = 2 (%) G=1,-",n;a=1,-",7—1)

where #* denote the parameters of the hypersurface F,_; (henceforth Greek
indices vary from 1 to »—1). It will be assumed throughout that the func-
tions (1.1) are of class C* and the matrix with the entries B = 3,4’ has rank
n— 1. For the sake of brevity we shall use the following notations:

Bij- ok

d i —_
By =129,92 By =

[ed

B! BJ...B

@B Y

A hypersurface vector %' possesses components x'* with respect to the
coordinate system of F,, which are related by

(1.2) x'f = Bl '™

(*) Pervenuta all’Accademia 1’11 agosto 1971.
(1) The numbers in the square brackets refer to the references given in the end.

’ . . 1.
(2) 9; = 3[9x%, 9 = 3[3x'? and x'! = dz

5 where s is the arc length.
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The metric tensor g, induces a metric tensor g, on F,_; by means of the
equation

(1.3) g ', ) = g, (", ) BY .
A unit normal N’ to the hypersurface is defined uniquely at each point

of F,_; with respect to a direction x# tangential to F,_; by means of the
following relations:

(1.4) g, (x,x)N'N =1
and
(1.5) N; B, =
where

N, =g, N

The intrinsic connection parameters of F,_; are given by [3]

FOLB - YocB - (COB GG "L Ccoc GB - Ec Cach G;) .

With the help of this connection the mixed intrinsic covariant derivative
is. defined by

Tapy = 8y To— o To T o* — T8, T4 + TN T B
where I/ are connection coefficients for F, and satisfy the relation

(1.6) a2 =o.

We can also define the following mixed tensor with the help of this connection
(1.7) Jig = B;/s =N* Qzﬂ — B! Aia

where flag are to be considered as the coefficients of the second fundamental
form of F,_; [2] and Ags is given by

(1.8) ab =& Aoy
where
Asys = (Mpy éao + Moy flgc — Mgp QW> s —
— (Mg Cgy —+ Mg Cop — My, Ci) N
In the above relation Qdu w* =N (u #"y and the tensor Mg is defined

by Mgy = My Bag where M, = C; N*.  The quantities Agss satisfy the
following relations

(1.9) Asp u® = NM§
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and
(I. IO) A;B %Ia %’B == 0.

Let the curvatures and unit normals relative to F,_; of a curve in
F, be 4 (r==1,2,3,+-,m—2)and w, (r=2,3,---,2— 1) and those
relative to F, be 4 (r=1,2,3, -, 2— 1) and g (r==2,3,--n). The
unit tangents will be denoted by i and & according as we regard it as
a vector in F, ; or in F,. It is clear from (1.2) that

(r.11) &l =i Bi
all along every curve in F,; but in general

& ==, By for » > 1.

2. ASYMPTOTIC LINE OF ORDER Y4

Definition. A curve in a hypersurface F,_; of a Finsler space F, is
defined as an asymptotic line of order p of F,_; if at every point of the
curve its first p normals relative to F, are all tangential to F,_;, where
p is essentially less than #»-— 1. So we must have

(2.1) LN, =o (r=1,2,3,"+,2).
Now we will obtain a set of conditions for an asymptotic line of order p.
THEOREM (2.1). — The necessary and sufficient condition for a curve in

Fu_1 to be an asymptotic line of order p is

(2.2) Er1 = M BL (r=1,2,3,"-,2)
or
(2.3) ky =k, (r=1,2,"--,p).

Proof. We will prove it in three parts. In first part it will be proved that
the conditions are necessary, by the method of induction. In next two parts
we will show that the conditions are sufficient.

(i) Suppose (2.2) and (2.3) are satisfied along an asymptotic line of
order p, then we shall prove that the similar results are also satisfied along
an asymptotic line of order p - 1.

Since an asymptotic line of order p + 1 is, in fact, an asymptotic line
of every lower order, we have from (2.2),

Epr1=Mp11 Ba.
i
Differentiating this along the curve we have

S . ; O ) 3
Y Ep+1 = Bg 55 Npr1 -+ g1 55 B
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where 88 is the intrinsic derivative along the curve. With the help of (1.7)

and the Frenet formula
S i p / kB b — p —
S5 =l T Bl ?f;p+2 —— Ry Sp , Ry = R, = O
we have
Byr1 Epra — ky £, = BL (kpr1 Myya— Ap3) + Jus Men 5,
which, by virtue of (2.2) and (2.3), reduces to
(2-4) Boi1Eore = Bl by e + Jip 7};+1 e

Multiplying (2.4) by N, and using (2.1), which also defines an asymptotic
line of order p + 1, we have

Jie N, np1mf = o.
From (1.5) and (1.7) we have
(2.5) Qup M1 M = 0.
On substituting (1.7), (1.9) and (2.5) in (2.4), we have
kepi1 Epra = Ryp1 Myan By — BINMS 054 .
As the curve is an asymptotic line of first order also, for which it is known that
(2.6) Qoo = o ie. N=o.
The above relation is also equivalent to
(2.7) Jeamini =o.
Consquently; we have
kpi1 Epra = kyi1 My00 Ba

which implies that

kpir = kpia and .9 = Nj1a By,

This shows that (2.2) and (2.3) is true for » = p -+ 1, that is, for asymp-
totic line of order P+

Now along any curve in F,,_I,E_,{ =7y B;, proceeding from this as
above, we have

(2.8) ky By = Ayt By + Jop i 0l

which on multiplication by N; and using (2.1) for » = 1, we have (2.6).
So on substituting from (1.10), (2 6) in (2.8), we obtain a relation, which
1rnplles that 4, = A and £ = 73 By.
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Hence, it shows that the condition is necessary for an asymptotic line
of order 1. Thus the theorem is true for p =1, and hence for
pP=2,3, ", n—2. ‘

(ii) Now we have to show that (2.2) is sufficient. Since 7 ; B: are

all tangential to F,_; and thus (2.2) implies that &, (r=1,2,-- -, p) are
all tangential to F,.

(iii) Lastly, we show that (2.3) is sufficient. So let us assume that
(2.3) is sufficient to define an asymptotic line of order p. Then 4, = 4,

(s=1,2,3,--+,p+1) can be considered as defining an asymptotic line
of order p, with additional property

(2.9) bps1 = Fpyr.

Hence (2.2) and (2.3) are satisfied and therefore also (2.4). From (2.4),
we have

&y é,?>+1 52+z ££+z =& (fé;+1 N2 B; -+ chﬂ M4t 71?) X
X (Ap11Mp42 BS -+ Jie Mh41 D)
which on simplification gives
K1 = kpny - &y Jae Mor1 5 J2e R
The above relation due to (2.9) reduces to
(2.10) Jea Mp417i = o.

Substituting (2.9) and (2.10) in (2.4), we get &, = 0},5 Bl which together
with (2.2), gives the result for asymptotic line of order p - 1.

- Hence, from (ii), the curve is an asymptotic line of order p + 1. But
it is seen from (2.8) that the condition (2.3) for » = 1, is sufficient to define
an asymptotic line of order 1; so that the theorem is true for p = 1, and hence
for p=12,3, -, 2—2,

COROLLARY (2.1). The necessary and sufficient condition for an asyptotic
line of order p is

(2.11) Jis it =o r=1,2,3,"+,2).
This can be written in an equivalent form

(2.12) Qe i 1§ = o (r=1,2,3,,2)

due to the fact that it will certainly be an asymptotic line of order I.

3. EXPRESSION FOR (7% — I)#4 CURVATURE OF A CURVE IN F

”

We now consider any asymptotic line of highest order (viz. 7 -— 2).
Since in this case the vectors Wy (r=1,2,3,-+-,%2—1) are all tangential
to F,_; it follows that the remaining normal 7, is orthogonal to F,_;.
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The first (z— 2) curvatures in F, are given by
b=k (r=1,2, -, n—2).

We can also find 4,_; at any point of the curve. By differentiating the
relation

7 o Z
Em———l = Np-1 B,
along the curve, we have

s . ;3 3 L
S5 &-1= By S5 N1 + My S5 B,

which with the help of Frenet’s formulae for F, and F,_; and (1.7) becomes
— fuz g + bu1 B = — Foug g Bl + Jop Miam}

By virtue of (2.2) and (2.3) it reduces to

(3.1) bon1 &y = Jop oy 75 .

Multiplying (3.1) by &;, we have

(3-2) Br1 = Jag a0,

We can eliminate v,_; and £, from this expression and get a form which

involves only a knowledge of thg point and the direction of the curve at the
point.

Since, at any point, 134 (r=1,2,3, -+, n) are » mutually orthogonal
unit vectors in F,, so we have

4

(3-3) LE =g,
r=17r 7
and since % (s=1,2,3,---,%2—1) are #— 1 mutually orthogonal unit
vectors in F,_;
n—1
(3.4) 2l =g,

As é’i_i is orthogonal to ,, we have from &Ry
E,-ljéa 1M = o.

This relation on combining with (2.10), which is true for p=1,2,3, -, 72— 2,
. ! .
in our case, gives

(3'5) Ez' J;B 7]:—1 7)?. == 0.
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Thus, from (3.2), we have

/6‘2--1 = (&; J;B M1 77‘13) &, Jga ")2_1 V)D =

= 3 a Joa Joe iy oy 0t

r=1

due to (3.5). From (3.3) and (3.4), we have
. n—2
bay =g, Jop Jie (g“e — Zl ' n?) e ;.

As in our case, p=#7— 2, the equation (2.11) is valid for p=1,2,3, -, n—2
and due to this, the above relation becomes

/73,2,_,1 S gz'j g‘xe J;B J&J)s 'Yﬁ V)i:
which on substitution from (1.3), (1.4), (1.5), (1.7) and (2.6) gives
(3.6) Foe1 = Qog OF i 1.

The Gauss equation referred to the intrinsic curvature tensor K,gy of
the hypersurface F,_; is given by [3]

3.7) KaBYe = Kym Bocﬂve [(ﬁav ﬁﬂa — ﬁcxa éﬁv) +
+ 2 My B (Quy Joe — s wa) n‘f F oy A — Ao A3 +

+ <AaBY\E_AaBs[Y) +g,j BB B Uce Jéy Bi) 7.

The term in square brackets can be regarded as the ‘relative curvature
tensor of F,_; in F,’. Let us denote it by Leg,..

The relative curvature of F,_; for the orientation determined by two
orthogonal unit vectors A7, 23 (in F,_) is Logye AT 25 27 2. It is the difference
of the Riemannian curvature of F,_; for that orientation and the component
of the Riemannian curvature of F, for the orientation determined by the
samei two vectors regarded as in F,.

By analogy with the mean curvature of F,_; in a given direction, we
.Shall define the mean relative curvature of F,_; in a direction of a point as
1/(n — 2) times the sum of the relative curvatures for the (z — 2) orientations
determined by the given direction and # — 2 mutually orthogonal direction
in F,_; at each point, each orthogonal to the given direction. If 2{ is the unit
vector in the given direction and » (r=12,3, -, 7 — I) are unit vectors
in the other (#-— 2) directions, the mean relative curvature in the direction
of A is

-1
Z Logye A0S AT 25

n—22
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Since Lugye is skew symmetric in v, ¢, the above expression becomes equal
to '
n—1

! 22 Logye 2525 2207
=

7n—2

which due to (3.4) reduces to

I By 7\& 7\5
77— 2 g +afye N1 AN

Thus, the mean relative curvature for an asymptotic direction 7§ becomes

I B [P 2V
(3'8> - g YLaBYE yh 7 -

7n-—2

With the help of equations (1.6), (1.10), (2.6), (2.7) and (3.6), the expression
(3.8) for the mean relative curvature for an asymptotic direction 7§ reduces to

(3-9) Fii=—(n—2)H.
The symbol H in the above relation stand for the mean relative curvature

of F,_1 in F, in the direction of the curve.

4. SOME SPECIAL CASES

(i) a hypersurface F,_; in a Finsler space of constant curvature F,.
If R is the Riemannian curvature of Ff, then we have

7oy Y
(4.1) Kiw&i =R <§h O — S O) -
Thus the mean intrinsic curvature in the direction of 7§, equal to

1 g‘BYK Bz‘jhk €

21
o ¢ ik Dapve

becomes equal to R, with the help of (1.11) and (4.1). And also the quantity
1
n—2

& K g 71 becomes

(4-2) niz K.nns =171

where J;’ is the Riemannian curvature of F,_; in the direction of the curve.
Thus from 'equations (3.7), (3.9), (4.1) and (4.2), we have

(4.3) bry= (n—2)(R—]".

(i) a hypersurface of constant Riemannian curvature.
In thisi case J' = R’ for every direction, where R’ is the constant
Riemannian curvature of F,, so the equation (4.3) reduces to

k1= (mn—2)(R—R).
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These properties can easily be considered for subspace of Finsler spaces,
and there will be no change in the conditions for asymptotic lines of order p
by taking the induced covariant derivative, as the induced and intrinsic

covariant derivative along the tangent to the curve is the same as remarked
by Rund [3].
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