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Analisi funzionale. —  Fixed points of multi-valued functions. 
N o ta (,) di S im e o n  R e i c h ,  presentata dal Socio G. S a n s o n e .

RIASSUNTO. -— Sono stabiliti vari nuovi Teoremi sul punto fisso per funzioni multivoche 
definite in un sottoinsieme chiuso convesso di uno spazio localmente convesso, oppure di 
uno spazio di Banach.

i. Introduction

Let X be a non-empty closed convex subset of a real Hausdorff 
topological vector space E. Let F assign to each x  € X a non-empty 
closed convex subset F (x) of E. If x  e X we shall denote the set 
{z e E : z  =  x  -f- c (y  — x) for some y  e X and c >  o} by Ix (#). More 
generally, if g  is a multi-valued function defined on X such that for each 
x e X  g(x)  is a non-empty subset of E, we put IX(^(V)) =  {z e E : z  =  
=  u +  c ( y — x) for some u e g ( x ) , y e X  and c >  o}. If S C E ,  clfS), 
cocl(S), int(S) and bd(S) will stand for the closure, convex closure, interior 
and boundary of S, respectively. In the sequel we shall consider the follow­
ing conditions which m ay be imposed on F:

(1) F(x) n  Ix (#) =f= 0 for each x  e X  y
(2) F(ar) n  cl (IX(V)) =j= 0- for each i g X ,
(3) int (X) =j= 0  and for some w e int (X), z — w  =j= m (y  —  w) for all 

y e b d ( X ) ,  z  € F(y)  and m >  1,
(4) If  the net { x d : d e  D } C X converges to x, and the net { y d : d  e D }, 

where y d e F(xd) for each ^ e D ,  converges to y , then F(x) D {z e E : 
z =  x  -F c (y  — x) for some c >  o } =j= 0 ,

(5) If x  e X  and h is a continuous linear functional which strictly sepa­
rates x  and F(x), then there exists a neighborhood N of x  in X such 
that h strictly separates N and (J { F(_y) : y  e N}.

If x  is an internal point of X then (1) certainly holds. If the interior of 
X is non-empty and F happens to be single-valued, then (2) implies (3), 
but not vice versa. If F is upper semi-continuous, or even merely upper 
demf-continuous ([2], p. 236), then it satisfies (5).

Fan ([2], p. 238) proved in fact the following result:
T heorem  A. Let X be a non-empty compact convex subset of a real, 

locally convex, Hausdorff topological vector space E. Let F assign to each x  e X 
a non-empty closed convex subset of E. I f  F satisfies both (1) and  (5), then 
it hßs a fixed  point.

iGlebov ([3], p. 447) established the following Theorem, after introducing 
condition (4). (*)

(*) Pervenuta alPAccademia il 26 agosto 1971.
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T h e o r e m  B. Let X be a non-empty compact convex subset o f a real, locally 
convex, Hausdorpf topological vector space E. Let F assign to each x  e X  a 
non-empty closed convex subset o f X. I f  F satisfies (4), then it has a fixed  point.

Cellina ([1], p. 30) observed that Theorem B is a consequence of Theorem A 
because (4) implies (5) when the range of F is contained in a compact subset 
of E. He also showed that if F (x) is compact for each* e X,  then (5) implies (4).

In this Note we intend to elaborate Cellina’s observation and to extend 
both Theorems.

2. C ompact  d o m a in s

T h e o r e m  i .  Let X be a non-empty compact convex subset of a real Haus­
dorjf topological vector space E. Let f  assign to each x  e X a non-empty subset 
of E and let g  assign to each x  e X a non-empty compact subset of E. Suppose 
that f  and g  enjoy the following property:

(6) If a continuous linear functional h strictly separates / ( * )  and g (x ) 
where * 6 X, then there exists a neighborhood N of * in X such that h 
strictly separates U { /  (y) : y  £ N } and U {g (y)  : y  e N }.
If

(7) / ( * ) D  cl(Ix (^(*)))=(=0 for each x e X ,
then there is a point y  e X for which / {y)  and g  (y) cannot be strictly 
separated by a continuous linear functional.

Proof. Assuming our claim is false, we follow in Fan’s footsteps in his 
proof of Theorem 5 of [2] and find a point y  6 X and a continuous linear 
functional h such that h ( u ~ v ) < o for all u e f ( y ) ,  v e g ( y )  and h (x ~ -y ) '> o  
for all x 6 X. A certain net {zd : d  e D}C Ix (g(y))  converges to some z e f  (y).  
By definition, zd =  wd-\-cd (xd— y)  where {wd : d e D} Cg(y) ,  {xd : d  e D}C X 
and cdf> o  for each d  eT>. We m ay assume that {wd : d e  D} converges to 
some w €g(y) .  But h (zd — wd) — cdh{pcd — y)  >  o for each d  € D. Hence 
h (z  — w) >  ó, a contradiction.

Lem m a i .  I f  f  and g  satisfy
(8) I f  the nets {xd : d  t  D} , {ud : d  e D} and {vd : d  c D} converge to x , u , v

respectively, where xd 6 X,  ud e f ( x d) and vd e g  (xd), then f { x ) C \ { z e  E : 
z  =  v -\-'C (u — v) fo r  some c > 0} 0 ,

and the ranges o f f  and g  are contained in compact subsets of E, then they satisfy (6).

Proof. Assume that our assertion is not true for a certain x  e X.  Then, 
although there exists a continuous linear functional h such that h (p  —  q )>  o 
for all p  e f ( x )  and q ^ g i x ) ,  for each neighborhood N of * in X and for 
each e >  o we can find u (N, e) e / ( N) and v (N , e) e g  (N) such that 
h (u (N, ej) -T h (y (N, ej) <  e. We can assume that the nets {u. (N , e) } 
and {^ (N , e'j} converge to u and v respectively. There is a point p e f ( x )  
such that p  =  v-{- c[u — v) for some c >  o. This implies that h(j>) =  h (y ) fi  
+  c(h(u)— h ( y ) ) <h ( v ) ,  a contradiction.

3. — RENDICONTI 1971, Voi. LI, fase. 1-2.
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COROLLARY i . Let X  be a non-empty compact convex subset of a real 
Hausdorff locally convex topological vector space E. Let F assign to each 
a non-empty closed convex subset of E. I f  E satisfies (5) and  (2), then it has 
a fixed  point.

Proof. A point and a closed convex set which does not contain it can 
be strictly separated by a continuous linear functional.

This result generalizes a Theorem of Halpern’s ([4], p. 88).

COROLLARY 2. Let X  be a non-empty compact convex subset of a real 
Hausdorff locally convex topological vector space E. Let F assign to each x  e X  
a non-empty closed convex subset of E. I f  the range of F is contained in a com­
pact subset of E  and i f  it satisfies (2) and (4), then it has a fixed  point.

Proof. This assertion is implied by Lemma 1, as well as by Cellina’s 
original observation.

3. N on-compact domains

Let (Y , d )  be a metric space and let P(Y) =  { A : A  is a non-empty 
subset of Y}. If BC Y is bounded we put (cfr. [5], p. 412) a(B) =  inf {r  >  o : 
B can be covered by a finite number of sets of diameter less than or 
equal to r}.  Now let S be a non-empty subset of Y and let F assign 
to each ^ c S  a non-empty subset of Y. We associate with F another 
function Gf : P (S) -> P (Y) by Gf (A) =  u  { F(a) : a e A }  where A e P  (S). 
F will be called condensing if for every bounded subset B of S with 
a (B) >  o G f(B ) is bounded and a (Gf (B)) <  a (B). If in addition 
a(B)  =  o => æ(Gf(B)) =  o, F will be called strongly condensing.

Another definition of a “ measure of non-compactness ” is feasible, 
namely b\ (B) =  inf {r  >  o : B can be covered by a finite number of balls 
with centers in Y and radius r).  This leads to a treatment of condensing 
functions in locally convex spaces. This treatment enables us to state the 
following results in a locally convex setting. However, we prefer, for the 
sake of simplicity, to restrict our attention to Banach spaces.

The idea of the following lemma is due to Halpern ([4], p. 90).
Lemma 2. Let X be a convex subset of a vector space E. Let z  belong to 

X and let y  belong to IX(V). Let C be a convex subset o f E which contains y . 
I f  z £ K =  X f i C ,  then y  e Ik (-s').

Proof. It is not difficult to see that y  =  z c(u  — z) for some c >  1 
and u  e X. The convexity of C implies that u e C ,  so that y  e Ik (-s').

Reinermann ([7], p. 341) used the next lemma, a direct consequence 
of Zorn’s lemma.

LEMMA 3. Let g  be a self-mapping of a partially ordered set T every chain 
of which has an upper bound. I f  x  <  g  (pc) fo r  all x  e T y then g  has a fixed  
point.

Let X be a non-empty convex subset of a vector space E. Let F : X-> P(E) 
satisfy (1). For each r e X  we choose once and for all a point u e X and a
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point z e F (x) such that z  =  x  +  c (u — x) with c >  i . If Y C X and 
x  e Y ,  F will be said to satisfy (i) with the original coordinates if this u 
belongs to Y.

T heorem  2 . Let f i  be a non-empty closed convex subset of a Banach space E. 
Let a strongly condensing multi-valued function  F assign to each # € X a non­
empty closed convex subset of E. I f  F satisfies (1), (4) and has a bounded range, 
then it has a fixed  point.

Proof. Fix a point w e X  and consider the following non-empty family 
of non-empty subsets of X : T  =  { Y C X : w e Y ,  F satisfies (1) on Y with the 
original coordinates, Y is closed and convex}. Define a function g  : T T 
by g ( Y) =  coc1 (Gf(Y) U w ) n  Y where Y € T. W ith the aid of Lemma 2 
it is seen that g  and T satisfy the conditions of Lemma 3 when T is ordered 
by inclusion. Since F is condensing Z, the fixed point of^*, is totally bounded. 
Since this fixed point is also closed and E is complete, it is actually compact. 
Gf (Z) is contained in a compact subset of E because F is strongly condensing. 
An appeal to Corollary 2 completes the proof.

The following result can be established in a similar fashion.

T heorem  3. Let X  be a non-empty closed convex subset of a Banach 
space E. Let a condensing multi-valued f  unction F assign to each x  G X a non­
empty closed convex subset of E. I f  F satisfies (1), (5) and has a bounded 
range, then it has a fixed  point.

Condition (3) appears in our last result. This proposition can be proved 
by first considering the single-valued case, where the Minkowski functional 
comes in handy, and then applying a special case of Michael’s selection 
Theorem ([6], p. 1404).

T heorem  4. Let X be a closed convex subset of a Banach space E. Let 
a lower semi-continuous condensing multivalued function  F assign to each x  £ X  
a non-empty closed convex subset of E. I f  F satisfies (3) and has a bounded 
range, then it has a fixed point.
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