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Analisi matematica. — A generalization of a matrix iterative
method of G. Cimmino to best approximate solution of linear inte-
gral equations of the first kind. Nota @ di WiLLiam J. KAMMERER e
M. ZunaiR NasHED, presentata dal Corrisp. G. FicHERA.

R1ASsUNTO. — Un metodo iterativo di G. Cimmino, relativo alle equazioni lineari
algebriche, viene generalizzato ad una equazione integrale di prima specie: J{x = y.
Ammettendo che il codominio R () di K abbia dimensione maggiore di uno, si prova che il
metodo converge ad un unico vettore che rende minima la norma di J{x-—y al variare

di y nellinsieme R () + R (H)*.

1. G. Cimmino [1] proposed an iterative method for a finite system
of linear algebraic equations which converges even if the system of equations
is inconsistent, provided that the rank of the matrix is greater than one.
It is the purpose of this note to generalize this method to linear integral equa-
tions of the first kind, and to announce a theorem establishing under mild
conditions the convergence of the method to the solution of the integral equation
if the equation has a unique solution, or to the solution of minimal norm if
the equation has an infinite number of solutions. If the integral equation
does not have a solution in the traditional sense, the method converges to a
function which minimizes the Ly—norm of Hx—y, where &K is the integral
operator, and is of least Ly—norm.

2. In order to show that our proposed iterative method for least squares
solutions of linear integral equations of the first kind may be viewed as a
natural generalization of Cimmino’s method for matrices, and to put the
method itself in proper perspective, we highlight briefly the algebraic and
geometric features of Cimmino’s method.

Let A = (a;) be an 7 X » matrix over the field of complex numbers
(the case of an » X 7 matrix can be incorporated by augmenting the matrix
by the appropriate number of zero rows or columns). Let (%, v) denote the
usual inner product in E”, and let P ... »® denote the rows of the
matrix A. These rows determine 7 hyperplanes in E” defined for x € E* by

= {x: 00, %) = 2}, i=1,m.

Let 2@ be any selected vector. We place a mass #; > o at the point
which is symmetric to x® with respect to the hyperplane ¥;. We do this

(¥) Pervenuta all’Accademia il 27 luglio 1971.
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for each of the hyperplanes and we take the centroid of this system of 7 masses
as our next iterate and continue the iteration in this manner using the same
respective masses #z;. Algebraically, it is easy to show that this algorithm
may be written in the form

7 -1 =z y . @) -1 2
® — : @1y o, KT LAl
X m x 2 g - 7
(,; f) ; 9, {

) (D, 2@-D) ,
= k-1 ___ Ao (7)
x Z |‘ @ “2 7

8

where p = 2 m;. Setting B= (W
= 7]

) » W= (8 7,)uxn, Where 3;; is the
nxn

Kronecker delta, we obtain

2B = 2= — 2 A¥ WB [Axt-D — ],
w
or

(1) 2B = |T — 3 A* WBA| 2¢-D 5 A* WBy,

which A denotes as usual the conjugate transpose of A.

G. F.Votruba [2] has studied recently the iteration (1) in the context of
generalized inverses of matrices and has shown that if the rank of the matrix
A is greater than one, and 7, = ||#®|?, then the sequence {x®} converges
to the vector A"y -+ Px®, where A' is the Moore-Penrose generalized inverse
of A (see for instance [3], [4]) and P is the orthogonal projection of E” on
the null space of A.

3. One can extend Cimmino’s method to Fredholm integral equations
of the first' kind

(2) JCx:(K@,t)x(t)dz‘:y, yvelyla, 8],

a

where K (s,%) €% {[a, 6] X [a, 6]} by defining the family of hyperplanes
5 .
J{i::%xELz[a,é] :fK(s,t)x(t)dt:y(s)

for almost every s €[a,4]. The operator Ji is completely continuous and
maps Ly[a, 4] into Ly[a,4]. The orthogonal projection of a function
x9 € Ly [2, 8] on the hyperplane ¥, is given by the function

(3) 2 =12+ Ar()K(s, ),
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where

I
y(&)—/K (s,7) xo () dr
€Y A(s) = 5 ,

/]K(s,r){zdr

and the reflection of x, through ¥, is given by % +2a(s) K(s,-). We
first show that z € ¥,:

5

5 5
jK(s,z‘)zJ(z‘)dt=J K(s,z‘)xo(t)dt‘—!‘)\(s)fK(s,t)K(s,z‘)dt:

I
—jK(y,t}xo(Z)dt s
:jK(:,z‘)xO(z‘)dz‘—{— 2 : JJK(s,t)lzdz‘z
a [IK(s,z)izdt e

=y (s).

Hence for almost all s in [2,8],2,€¥,. On the other hand, letting ¢y
denote the inner product in L, [, 4], we have from (3) and (4),

Fo—2,,8—2)=(—A(EK(, ), 2+r)K(s,:)—2) =

= =A@ LK, )2 +AEKE, ), K(s, ) —(K(s, ), 2} =

S 5 —[Kenm@a s
= =) (K, ) 70) + —5 f]K(s,z)[zd;_.
flK<s,t>lzdz a

5

— K(s,t)ET)dtzzo for ze€l¥,.
Oy

o/
a

The next iterate x; in the Cimmino iteration would be the centroid
of the famlly of points with the appropriate weight funct1or1 Taking

m (s) --—f]K(s A’ d¢ to be the mass density and B = ffIK (s, )| ds d¢
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to be the total mass, we obtain

5
xl(z‘)=%jm(s)[x0(z‘)—{—27\(s)K(s,t)]ds:
) 5 5
=x0(z‘)————g~fK(s,z‘)fK(s,r)xo(r)drds-1—

+2 [KE oy @,

In operator notation, this becomes
7 @)= (I—5 & H) 2 &) + 3 9 @)

where I is the identity map on L, [@,8] and " is the adjoint operator of
H. In general
(s) Fa = (1 — 5 I &)z, + 5 &y

e g

We note in passing that (5) is a particular realization of the successive approxi-
mation method with an averaging parameter,

6) Tnpr = %, — o Kz, + ad™y
for the solution of the equation
) H*Jx = Ay,

Since the closure of the image of the unit ball under the completely conti-
nuous operator & is compact, % (K), the range of &, will be a closed subspace
of Ly [a, 4] if and only if % () is finite dimensional, i.e., if and only if the
kernel K (s, #) is separable or degenerate. Thus in general one cannot apply
to (5) and (7) standard convergence theorems for successive approximations
(for instance [5], [6]), nor recent convergence results for singular linear ope-
rators with closed range given by H. B. Keller [7], W. V. Petryshyn [8],
G. F. Votruba [2] and others.

4. Let % () denote the null space of ¥, ie., N(H)={xreL,[a,s:
Hx=o0}. Since I is continuous, N (K) is a closed subspace of L, [z, 5]
and we have an orthogonal decomposition of Ly [a, 6], namely

Ly[a,8] =% (&) @ N (&),

where 0t (#)* is the orthogonal complement of N (HK). The transformation &K
establishes a one to one correspondence between % (¥)' and % (H). The
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restriction K| N () of F to N (F)' possesses an inverse which need not be
continuous unless & () is closed. We define the generalized inverse &' of & to
be the linear extension of {J|9% (#)'}™" so that its domain is % COE G
and its null space is %t (¥). It should be observed that %' is defined only on
the dense linear manifold 9 () 4 % (F)* = 9t (K) 4+ N ("), which coincides
with L,[a, 4] if and only if 3 () is closed. The range of &' is % (F) =N (K.
We note that this definition of the generalized inverse corresponds to the
maximal generalized inverse with closed null space; see E. Arghiriade [9]
and E. Arghiriade and A. Dragmir [10]. The Authors [11], [12] used this
definition in establishing the convergence of the steepest descent and conjugate
gradient methods to best approximate solutions of singular linear operator
equations.

Let P be the orthogonal projection of Ly[a, 8] onto % (#¥) = 9 (H)*
and Q the orthogonal projection of Ly[a, 8] onto % (K*). Then it follows
easily that &' = P, & ot ()" = {0}, and the projection Q) is the unique
continuous extension of HK' to all of L, [a,8].

A function u €Ly [a, 8] is called a best approximate solution of the integral
equation (1) if # minimizes the Ly—norm of Hx—y. Clearly (1) need not
have a best approximate solution for each y € L,[a, 4], when the kernel
is not separable. For if Qy is in % (K) but is not in % (K), then
inf {||#x — v || : x € Ly} is not attained for any x €Ly [a, 4]. However it is not
hard to show (see [11] for a simple proof) that for each y € R (J) 4 R (K)', the
domain of &', the equation (2) has a unique best approximate solution z of
minimal norm given by v = Jly, ie.,

|y — 8" y|| = inf {|| y — x| : 7 € Ly)

and | &'y | <|u| for all w€Ly for which ||y —&& y|| = ||y — du|,
u==¥"y. Throughout, |- || denotes the Lo—norm.

5. We are now in a position to state our Theorem on the convergence of
the generalization of Cimmino’s method proposed in Section 3, to the best
approximate solution of minimal norm of Fredholm integral equation of the
first kind. A similar result can be formulated for Volterra integral equations
of the first kind. A proof in the context of general iterative methods
(see ‘also [13]) along with gradient methods for best approximate solutions
of linear integral equations of the first and second kinds will appear else-
where.

THEOREM. Let K (s, )€ {[a,b] X [a,bl}, and let & denote the com-
5
Ppletely continuous linear operator Kx = f K (-, x (¢) dt whick maps Ls[a, 8]

into Lo [a, 8. If the dimension of the range of K is greater than one, then the
generalization of Cimmino’s method converges monotonically to the best approxi-
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mate solution of minimal norm of the integral equation of the first kind, starting
Jrom the initial approximation xy = 0, for anv y €N (H) 4+ N ( J{).L and
1ty 2 o2
%, — &'y |* < L ywm )yl
[ P o+ S 6 — [ I Ty P

’

s b
where B :ff]K(s,t)[z ds dz.
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