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Analisi funzionale. —- A n  existence theorem fo r  quasimonotone 
operators. Nota di B ruce C alvert (*} e J effrey  R onald L eslie 
W ebb  (**}, presentata (***} dal Corrisp. G. S tam pacchia .

RIASSUNTO. —- Si dà un esempio di un operatore differenziale che non è pseudom o
notono, m a per il quale si dim ostra un teorem a di suriettività per mezzo della teoria astra tta  
degli operatori quasimonotoni introdotti in questo lavoro.

The existence theory  for nonlinear partia l differential equations has 
been tackled over the last few years by the theory  of m onotone operators 
and their generalizations. One of the m ost powerful abstract results to date 
seems to be one recently  announced by Browder regarding pseudom onotone 
operators. T his result is obtained as a consequence of a generalized theory 
of degree which is applicable to the pseudom onotone operators. In  the present 
paper, we introduce a class of m appings, the quasim onotone operators, which 
includes the pseudom onotone class and prove a sim ilar existence theorem  
for this class. A lthough the generalized degree theory is available, we prefer 
a more direct and sim pler approach.

O ur approach enables us to give a m apping theorem  for operators satisfy
ing condition (S) which was obtained under the hypothesis (S)+ by Brow
der [4], using a generalised degree theory, and by Hess [5], using finite 
dim ensional approxim ations; it is not clear th a t the result for (S) could be 
obtained from  the degree theory. We give a concrete exam ple to show th a t 
our theorem  is a real extension of the previous one.

W e shall work throughout in a reflexive separable Banach space, denoted 
by X, and we shall suppose th a t it is endowed w ith the equivalent norm  which 
m akes X and X* locally uniform ly convex. W e recall th a t X is said to be 
locally uniform ly convex if for each a: in X with \\x || =  1 and each £ >  o 
there exists Y)> o such th a t || y  || <  1 and \\x  +  y  || >  2 (1 — yj) together 
im ply th a t || x — y  | |<  s. The existence of the equivalent norm  in our case 
is assured by results of K adek [6] and A splund [1].

L et T  : X X* be a (not necessarily linear) m apping. T  is said to be 
bounded if the im age of each bounded set is bounded. T  is said to be pseudo- 
m onotone if it is bounded and satisfies:

(PM ) : W henever a sequence { x f  in X converges weakly to an element x  
and lim sup (Txy , xj —  x) <  o, then lim in f (Tx j , xj —  y) >  (Tx, x <— y) 
for all y  in X.

(*) Borsista del C .N.R. presso l’Istituto per le Applicazioni del Calcolo, a Roma.
(**) Borsista della Royal Society presso l ’Istituto per le Applicazioni del Calcolo, 

Roma.
(***) N ella seduta del 18 giugno 1971.
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This definition is due to Brézis [2]. Note th a t we have used the usual 
notation ( f , x )  to denote the value of /  in X* at x  in X.

A  weaker requirem ent th an  pseudom onotonicity is condition (M ) of 
Brézis [2]:

(M ) : If  x n x  weakly in X and T xn -> /  weakly in X* and
lim sup (TxM , x n) <  ( / ,  x) then T x  =  f .

The conditions (S) and (S)+ were defined by Browder (see e.g.; [4]) and 
are the following:

(S) : ^  -> x ' w eakly in X and lim (Txn , xn —  x) =  o together im ply 
th a t x n —> x.

(S)+ • xn x  w eakly and lim sup (Txn , x„ —  x) < 0  im ply th a t x n x .

T he quasim onotone operators are those bounded m appings T  : X X* 
which satisfy

(Q) : xn -+-x weakly implies th a t lim sup (Txy , xy —  x) >  o.

W e recall th a t T  is said to be dem icontinuous if xj -> x  implies tha t 
Txy T x  weakly. I f  T  is pseudom onotone it is autom atically dem icontinuous.

Lemma i : Let T  : X X* be bounded, demicontinuous and satisfy (S)
and suppose there is a constant M >  o such that T  is an odd map fo r  || x  || > M , 
that is, T (— x) =  — T(x) whenever || x  || > M . Then there exists x  such that 
T x  =  o.

Proof By the separability  of X, there is a countable fam ily Xy of finite 
dim ensional subspaces of X such th a t XyC X y+1 for a l ly  and with union 
dense in X. L et pj be the injection m ap of Xy into X and p* its adjoint. 
T hen Ty==^yT^y is a continuous m ap of X, into X* and is odd for 
Il x  II =>M. By the finite dim ensional Borsuk theorem  there exists xj in Xy 
with |k y | |< M  such th a t Ty ^y =  o. By the boundedness of .{xy} and the 
reflexivity of X, there is a subsequence {xÂ}, such th a t x k -> x  weakly in X. 
T hen (Tyk , x k) =  (TÂxk , xk) =  o for all k and further (Txk , v) -> o for all v

00
in U Xy, for if v is in X n, (Tx& ,v) =  (T &Xk,zS) =  o for all k~>n. I t follows 

y=1
th a t ÇTxk , x k —  v) -> o for all v in X because the convergence holds for v 
in a dense subset and {T xk} is bounded. T aking v =  x  and applying (S) we 
obtain x k ~>x. By dem icontinuity  T xk ->T x  weakly; however, the above 
established th a t T x k -> o w eakly so th a t T x  — o.

Remark. T he same conclusion holds for operators th a t satisfy (M) instead 
of (S); the proof is a routine modification of the above.

The next Theorem  is the key to proving results for quasim onotone opera
tors: we prove it for m aps satisfying (S) for its independent interest though 
in the sequel ;we only use it under the stronger assum ption (S)+ .

Theorem i . Let B. =  B (o ; r) be a closed ball in X centred at o and 
with radius r  >  o. Let F  : B X [o ', 1] be such that F, — F (-  , t) is a demicon
tinuous bounded map satisfying (S) fo r  each t in  [o , 1 ].
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Suppose also th a t

H i : F  is continuous in t  uniform ly for x  in B, th a t is, tj -> t  and {x j}  C B
im ply F  (xj , tj) —  F  (xj , f) -> o.

H2 : F  (x , t) =|= o for all x. in bdy(B) =  {x  : \\x\\ =  r}, and all t  in [o , 1].
H3 : Fo is odd on bdy(B).

T hen there exists x  in B such th a t F x(a;) =  o.

Proof. W ithout loss of generality  we assume th a t r  =  1. Define a 
m ap A : B - >  X* by

j F ( p k , 2 ( l - | k l l ) ) if M  — T

\ if | | x | | ^ i .

Clearly A  is bounded and it is routine to establish its dem icontinuity. 
We show th a t it satisfies (S). Suppose th a t xn -> x  w eakly and th a t 
lim (Axn , xn —x) =  o. Let {x k} be the subsequence of {xn} for which

and {x j}  be such th a t ||;*y|| >  — . From  the definition of A  and the fact 
th a t Fi satisfies (S) we see th a t x k ->x. The sequence {x j}  has a subsequence, 

which we denote again by {xj}, such tha t ||^y ||->  Ae 
quence of H 1 we find

As a conse-

lim  F , 2 ( i  — A) x. —  X̂ j =  o .

However, we also have, because F  is bounded and

T his yields

l i m ( p ( i5 r 2 ( I - x ) ) >
By the (S) conditions imposed we have ~— jj" y  , th a t is, xj x  and

a posteriori A =  ||^ ||. Hence the whole sequence Xj~± as the above argum ent 
can be applied to all subsequences.

I t follows th a t xn x  and so A satisfies (S). Since A  coincides with F 0 
on bdy (B), it is odd there; Lem m a 1 applies and furnishes x  in B such th a t 
A (x ) — o. However this implies th a t F ^jy ) =  o for some y  in B, for to 
the contrary  we would have A  (x) =j= o for all x  in B.

U nder the assum ption (S)+, this result has been proved by Browder [3] 
and bÿ Hess [5]. Browder used degree argum ents and also took X to be 
separable but Hess, by using finite dim ensional approxim ation m ethods, 
rem oved the separability  assum ption. If  we had established Lem m a I for 
nonseparable X we could do the same for condition (S).
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For the next result we need the notion of a duality  m ap. A  m ap 
J : X ->X * is called the duality  m ap if \\](x) || =  \\x || and {]{x) ,x )  — \\x \f  
for a l l e i n  X. As X* is locally uniform ly convex J is uniquely determ ined 
by these requirem ents (see e.g. [3]). The following Lem m a characterizes the 
quasim onotone operators.

Lemma 2. Let T  : X —> X* be bounded and demicontinuous. Then T  is 
quasimonotone i f  and only i f  fo r  all s >  O , T-j- s j  is bounded, demicontinuous 
and satisfies (S)+ .

Proof. L et T  be quasim onotone and suppose th a t Xj at weakly and 
lim sup ((T +  s j )  { x f  , Xj —  x) < 0 .  From  (Q) we obtain lim sup (eJ{x f  —  

sl ( x ) > xj  x) =  lim  sup ( s j (xf) , Xj —  x) <  o. Since J is m onotone each term  
is nonnegative so the lim in f >  o. This implies that (J(xj) — }{x") , Xj —  x) -^o  
and so a: (see e.g. [3]).

Conversely, suppose th a t T  does not satisfy (Q), th a t is, there is a sequence 
X j - x x  weakly for which lim sup (T(x/j , Xj —  x) =  —  8, 8 >  o. Note th a t 
this shows th a t x ^ fi+ x .  Since {xj}  is bounded, say  \\xj\\ <  M we have 
I (SJ(xf  ’ xi  x) I A  s 2M  <  S/2 for e sufficiently small. Then for such s 
lim sup ((T +  sJ) {x f ,Xj —  x) <  — 8/2 <  o. However, as noted above, {xj}  
does no t converge to a:, so th a t (S)+ does not hold for T  +  eJ for all s >  o.

W e can now give the surjectiv ity  Theorem  for quasim onotone operators.
Theorem 2. Let T t , o <  t <  1, be a fa m ily  o f quasimonotone, demicon

tinuous operators satisfying H  1. Suppose that T0 is an odd map fo r  large \\x\\. 
Further, assume there is a continuous function  9 : R+ R + such that fo r  
all f  in  X* and t in [o , 1], T t(x) = /  implies that ||x || <  9 ( | | / | | ) .  Suppose 
T(B) is closed fo r  each closed ball B. Then T  is onto.

Proof. L et /  be an a rb itra ry  point of X* and choose r  >  o such th a t To 
is odd for II x  || >  r  and ||T ,(^)|| >  1 +  | | / | |  for ||* || >  r  and for all t  in 
[o , 1]; (that th is can be done m ay be seen as follows: suppose not, then there 
are sequences {*,} , { f }  such th a t ||* / ||-» -o o  and ||T,y(^y)|| <  1 + 1|/1|. 
W rite gj — T t .{x f  and apply the hypothesis to obtain || xj || <  9 (||^y ||), 
which contradicts ||*y || 00 because \\ gj || <  1 +  | | / | |  and 9 is continuous).

Now chopse s >  o such th a t sr <  1 and define

F (x , t )  =  T t (x) +  sj(x)  —  t f , o < t < \  , | | ^ | | < r .

One easily sees th a t the hypotheses of the preceding Theorem  hold so there 
exist * £ w ith \\x f  \ <  r  such th a t T t { x f  +  e]{xf  = / .  L et s -> o : T ^ ^ )  / .
By the closedness hypothesis there is an x, \\x\\ < r  such th a t Ti{x) = f .  
T he proof is complete.

C o r o l l a r y . Let T  : X -> X* be quasimonotone and demicontinuous and 
suppose there (ire positive constants X and  M such that (T (x) , x) >  —  X || ^  || 

fo r  II x  II > M .  Then T  +  z] is surjective fo r  all z >  o. If, inaddition, T(B) 
is closed fo r  each closed ball B and i f T  is coercive, that is, (T(x) , * )/||* || -> oo 
as ||^ ;||-> o o , then T  is surjective.

49. — RENDICONTI 1971, Voi. L, fase. 6.
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Proof. For /  in X* we apply Theorem  1 to the hom otopy 
F (x  , t) — IT  (x) +  sJOr) —  tf. W hen T  is coercive the solutions ;rs of 
T (^ s) +  s j(# e) =  /  are bounded independent of s; the closedness hypothesis 
completes the proof.

T he sum of two quasim onotone operators is again quasim onotone as 
we see from  Lem m a 2. C onsequently the sum of a m onotone operator with 
a com pact one is quasim onotone bu t need not be pseudom onotone if the 
com pact m ap is not com pletely continuous. W e recall th a t by com pact we 
m ean continuous and the im age of each bounded set relatively compact; 
by  com pletely continuous we m ean th a t weakly convergent sequences are 
m apped into strongly convergent ones. In  order to apply  our Theorem  to 
the sum  of a m onotone operator w ith a com pact one we need the closedness 
hypothesis to hold. This will be so if A  is proper; we have not found any 
exam ples o f second order and zero order operators which are m onotone and 
proper th a t do not also satisfy (S)+ . Therefore we give an operator of first 
order.

Exam ple : For a function u in L 2(S1), S1 the un it circle in R 2 (which
m ay be identified w ith a periodic function on [o , 2 tt]) the Fourier series 
expansion

00
u (x ) =  2  an e nx, o <  ^ <  2 7z,

n — — 00

2at

is valid, where an =  (2 7r) 1 Ju(x)  e tnx dx , as (2 n) 1/2 emx is a complete
0 00

orthonorm al basis. For a function u in C00̂ 1), | |^ | |2 =  2  \nc&\ defines
n =  — oo

a seminorm, and \\u\\ =  o implies th a t u =  a0y a constant function. We 
definé H to be the completion of C00(S1)/{constants} w ith respect to this 
norm . W e define H* to be the completion of those functions /  in C00^ 1)

00
which are perpendicular to all constants (in the L 2 sense), th a t i s , / =  ^  bn e i n x y

n — — 0000
bÿ =  o, w ith respect to the norm  | | / | |  =  \ n ~ x on\. A  natu ral pairing

n=  — 00
between elements in H and H* is provided by  the L 2 pairing (or equiva- 
léritly / 2), nam ely for ü — u  +  {constants} in H and /  in H*, let

2 jt

( J ,ü )  = j  u ( x ) f ( x )
00

dx  —  etfi bn ,
n— —00

an , bn the respective Fourier coefficients.
One m ay check th a t this is a well defined continuous bilinear form on 

H XH*. In  fact H* is the dual space of H under this pairing.
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For ü =  u +  {constants} and v =  v +  {constants} with u , v in C0o(S1) 
we define

<3 v. dx  .

This is well defined, a bilinear functional, which extends by continuity to 
H x H .  W e define A  : H -> H* by

(Au , v) =  a (u , v) for all v in H .

PROPOSITION: Let g  £ H* with  JI^H sufficiently small. Then fo r  every f
in  H*, there exists ü in  H such that

Am +  \\ü\\g = / .

Thus, i f  we define H 1|2(S1) to be j u 6 L 2 (S1) such that (lk lli/2 )2 =
OO \

1^0 I +  llLi ! nan \ <  00 !, fo r  f  in  H*, there exists u in  H 1/2(S1) such that
n =  — oo )

d u
dx +  in f {|| u — k ||1/2 : k constant function } g  = f .

Proof. W e show th a t A  is monotone. For u in C ^ S 1)
2 7t

Re a (u , u) — Re f  • ü  =  1/2 \ u u f f  =  o ,

because ^  is periodic. C onsequently the same holds for ü in H by continuity.
00

A  is bijective; we prove th a t it is onto. For let f e  H*, t h e n / — ^  bn einxy
00 n——oo

=  o, and the element ü =  2  ( i n f 1 bnet n x {constants} is such th a t AÆ = / .
72— — OO

Also, one sees th a t A*(u) — — A(u),  so th a t A* is also onto; this proves 
th a t A  is one to one. Hence A “ 1 is a bounded linear operator by B anach’s 
inverse m apping theorem . T he m apping C : H H* defined by C (u) = \ \u \ \g  
is com pact.

The proof th a t the im age under A +  C of each ball is closed is a consequ
ence of the boundedness of A -1 .

Now let T t x  =  A x  -f- tCx, x  in H , o <  t <  1. W e see th a t each T* 
is quasim onotone, H 1 of Theorem  1 holds, and To is an odd m apping. M o
reover, if T, (x) =  / ,  we have

A x  = / — t \\x\\g ,

so that,

Ik  II ^  Il A -1 II ( 11/ II +  # ||* || Ill'll), which gives, for | |* | |<  || A“ 11|—1,

Ik II <11/11 II A-1 II (1 — Il A“1 ü H* H)“1.



696 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. L -  giugno 1971 [3 6 8 ]

Finally, H is a separable H ilbert space, in particular reflexive. Thus all 
the requirem ents for Theorem  2 are m et and so A  +  C is surjective, which 
completes the proof.

Remark. The m apping A  +  C above is not pseudom onotone for g  =J= o. 
For, there is a sequence uni \\un\ = i ,  and uH-> o weakly. For such a 
sequence we have lim sup (Aun-\- Cun ; un —  u) =  o. If  A  +  C were pseudo
m onotone this would im ply th a t for all z/in H , lim in f (Aun-\-Cun , un —  v) >  o. 
This gives ( g , — v) > 0  for all z/ in H, contradicting ^=[=0. A  sim ilar 
argum ent can be used to show th a t (M ) is also not satisfied.
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