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Analisi funzionale. — An existence theorem for quasimonotone
operators. Nota di BRUCE CALVERT ®’ e JEFFREY RonNaLD LESLIE
WEeBB ", presentata @ dal Corrisp. G. STAMPACCHIA.

RIASSUNTO. — Si da un esempio di un operatore differenziale che non & pseudomo-
notono, ma per il quale si dimostra un teorema di suriettivitd per mezzo della teoria astratta
degli operatori quasimonotoni introdotti in questo lavoro.

The existence theory for nonlinear partial differential equations has
been tackled over the last few years by the theory of monotone operators
and their generalizations. One of the most powerful abstract results to date
seems to be one recently announced by Browder regarding pseudomonotone
operators. This result is obtained as a consequence of a generalized theory
of degree which is applicable to the pseudomonotone operators. In the present
paper, we introduce a class of mappings, the quasimonotone operators, which
includes the pseudomonotone class and prove a similar existence theorem
for this class. Although the generalized degree theory is available, we prefer
a more direct and simpler approach.

Our approach enables us to give a mapping theorem for operators satisfy-
ing condition (S) which was obtained under the hypothesis (S); by Brow-
der [4], using a generalised degree theory, and by Hess [5], using finite
dimensional approximations; it is not clear that the result for (S) could be
obtained from the degree theory. We give a concrete example to show that
our theorem is a real extension of the previous one.

We shall work throughout in a reflexive separable Banach space, denoted
by X, and we shall suppose that it is endowed with the equivalent norm which
makes X and X* locally uniformly convex. We recall that X is said to be
locally uniformly convex if for each x in X with ||x||= 1 and each £ > o0
there exists %> o0 such that ||y| <1 and || +y| =>2 (1 —m) together
imply that [|x—y ||<e The existence of the equivalent norm in our case
is assured by results of Kadek [6] and Asplund [1].

Let T:X — X* be a (not necessarily linear) mapping. T is said to be
bounded if the image of each bounded set is bounded. T is said to be pseudo-
monotone if it is bounded and satisfies:

(PM): Whenever a sequence {x;} in X converges weakly to an element x
and lim sup (Tx;, x; — x)<o, then lim inf (Tx;, x; — ) = (Tx,x — %)
for all y in X.

(*) Borsista del C.N.R. presso I'Istituto per le Applicazioni del Calcolo, a Roma.

(*¥*) Borsista dellaRoyal Society presso !'Istituto per le Applicazioni del Calcolo,
Roma.

(**%*) Nella seduta del 18 giugno 1971.
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This definition is due to Brézis [2]. Note that we have used the usual
notation (f, x) to denote the value of f in X* at x in X.
A weaker requirement than pseudomonotonicity is condition (M) of
Brézis [2]:
(M): If x,—x weakly in X and Tz, - f weakly in X* and
lim sup (Tx, , x,) < (f,x) then Tx = f.

The conditions (S) and (S), were defined by Browder (see e.g.; [4]) and
are the following:
(S): % —>=x weakly in X ‘and lim (T, ,x,—x) = o together imply
that x, — x.
(S)+: % —x weakly and lim sup (T#, , %, —x) < o imply that x, —>x.

The quasimonotone operators are those bounded mappings T : X — X*
which satisfy

Q: #x —x weakly implies that lim sup (Tx;, z;— x) > o.

We recall that T is said to be demicontinuous if x; —x implies that
Tx; —Tx weakly. If T is pseudomonotone it is automatically demicontinuous.

LEMMA 1: Zet T: X — X* be bounded, demicontinuous and satisfy S)
and suppose there is a constant M= o such that T is an odd map for || x| =M,
that is, T(—x) = — T(x) whenever ||x || =M. Then there exists x such that
Tx = o.

Proof: By the separability of X, there is a countable family X of finite
dimensional subspaces of X such that X;CX;,; for all ; and with union
dense in X. Let {; be the injection map of X; into X and ¢; its adjoint.
Then T; = ¢; Ty, is a continuous map of X, into X, and is odd for
[z ]l =M. By the finite dimensional Borsuk theorem there exists x; in X;
with [|2; | <M such that T;x; = o. By the boundedness of {x 7} and the
reflexivity of X, there is a subsequence {x;}, such that x; - x weakly in X.
Then (Tx , x5) = (T425 , 2) = o for all £ and further (Tx;, 2) — o for all v

in U X, for if vis in X,,, (Tx;,v) = (Ts2z,9) = o for all £>7n. It follows

that (Tx,g2 y%z—v) =0 for all v in X because the convergence holds for »
in a dense subset and {Tx,} is bounded. Taking v==x and applying (S) we
obtain x, —x. By demicontinuity Tx, - Tx weakly; however, the above
established that Tx, — o0 weakly so that Tx = o.

Remark. The same conclusion holds for operators that satisfy (M) instead
of (S); the proof is a routine modification of the above.

The next Theorem is the key to proving results for quasimonotone opera-
tors: we prove it for maps satisfying (S) for its independent interest though
in the sequel we only use it under the stronger assumption (S), .

THEOREM 1. Lot B= B (0;7) be a closed ball in X centred at o and
with radius v >o0. Let F:BX [0, 1] be such that ¥, = F (- ,£) is a demicon-
tinuous bounded map satisfying (S) for each t in [0, 1].
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Suppose also that

Hri: F is continuous in # uniformly for x in B, that is, # —# and {xJ}CB
imply F(%;,¢)— F(x;,#) —o.

Hz2: F(x,#)==o0 for all x in bdy(B) = {x:|x||=7}, and all #in [0,1].
H3: Fo is odd on &dy(B).

Then there exists # in B such that F;(x) = o.

Proof. Without loss of generality we assume that » = 1. Define a
map A: B — X* by

I

ooz —lxD) i el >

| Fliz
A =]
| Fex, 1) NS

Clearly A is bounded and it is routine to establish its demicontinuity.
We show that it satisfies (S). Suppose that x,-— x weakly and that

lim (Ax,, x, —x)=o0. Let {x;} be the subsequence of {x,} for which |z, < —;~

and {x;} be such that | ;|| >%. From the definition of A and the fact
that Fy satisfies (S) we see that x; —x. The sequence {x;} has a subsequence,

which we denote again by {x;}, such that ||z;||— A€ [% , I} . As a conse-
quence of H1 we find

lim( <H ik (1—7\)> , xj—x) =o0.
However, we also have, because F is bounded and ||x;| > %

tim (F( 2, 2(0—=9) 2 — ) =o.
This yields

lim (F(y, 2 (=) iy — 5 ) =o.

By the (S) conditions imposed we have »3;—', that is, x; -« and

A
T
a posteriori A= ||x|. Hence the whole sequence x; — x as'the above argument
can be applied to all subsequences.

It follows that x, —x and so A satisfies (S). Since A coincides with F,
on bdy(B), it is odd there; Lemma 1 applies and furnishes x in B such that
A(x) =o0. However this implies that F;(y) = o0 for some y in B, for to
the contrary we would have A (x)5=o0 for all x in B.

Under the assumption (S),., this result has been proved by Browder [3]
and by Hess [5]. Browder used degree arguments and also took X to be
separable but Hess, by using finite dimensional approximation methods,
removed the separability assumption. If we had established Lemma I for
nonseparable X we could do the same for condition (S).
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For the next result we need the notion of a duality map. A map
J: X —>X* is called the duality map if ||J(x)||=z| and (J@), ) =|z|?
for all x in X. As X* is locally uniformly convex J is uniquely determined
by these requirements (see e.g. [3]). The following Lemma characterizes the
guasimonotone operators.

LEMMA 2. Let T : X — X* be bounded and demicontinuous. Then T is

quasimonotone if and only if for all € > o, T+ ] is bounded, demicontinuons
and satisfies (S), .

Progf. Let T be quasimonotone and suppose that z;— x weakly and
lim sup (T + <J) (%), #;—=x) < o. From (Q) we obtain lim sup (eJ(x) —
—eJ(x), x; — x) =limsup (] (x;), #, — x) <o. Since J is monotone each term
is nonnegative so the liminf = o. This implies that (J(x;) — J(x), x; —x)—>0
and so x;— x (see e.g. [3]).

Conversely, suppose that T does not satisfy (Q), that is, there is a sequence

x;—>x weakly for which lim sup (T(x,),x;—x)=-—3, 8 >0. Note that
this shows that x, |>x. Since {x;} is bounded, say ||zl <M we have
[(](x)) , %, — < 3/2 for e sufficiently small. Then for such e

lim sup ((T+a])( ) %—x) < —38[2 <o. However, as noted above, {x;}
does not converge to x, so that (S); does not hold for T + €] for all € > o.

We can now give the surjectivity Theorem for quasimonotone operators.

THEOREM 2. Let T,, 0 <t < 1, be a family of quasimonotone, demicon-
tinuous operators satisfying H 1. Suppose that To is an odd map Jor large || x|
Further, assume there is a continuous function ¢:RY—>RY such that Jor
all f in X* and t in [0,1], Ti(x) =f implies that ||z|| < o ULFID. Suppose
T(B) is closed for each closed ball B. Then T is onto.

Proof. Let f be an arbitrary point of X* and choose » > o such that T,
is odd for [[x || =7 and || T,(®)| > 1 + || f|| for ||x|] ># and for all ¢ in
[0, 1]; (that this can be done may be seen as follows: suppose not, then there
are sequences {z;}, {#;} such that ||x,|| > co and IT,E N < 1 4/
Write g; = T,;(x;) and apply the hypothesis to obtain 21 < @ (g 1D,
which contradlcts [lx;]| = oo because [|g; || < 1+ || f] and ¢ is continuous).

Now choose €> 0 such that e#< 1 and define

Fr,)=T:@) +eJ@—tf, o<i<i, |x]<r.
One easily sees that the hypotheses of the preceding Theorem hold so there
exist #; with ||z || <7 such that T{(x.) + eJ(x.) =F Lete—>o: T () ——>f

By the closedness hypothesis there is an z, Jlx|| <7 such that Ty(x) =
The proof is complete.

COROLLARY. Let T : X — X* be guasimonotone and demicontinuous and
suppose there are positive constants h and M such that (T (%) ,x) >—2 ||« [
Jor | x| =M. Then T + €] is surjective for all € > o. 1f, in addition, T(B)
is closed for each closed ball B and if T is coercive, that is, (Tx), o)/l z|| = oo
as ||x|| = oo, then T is surjective.

49. — RENDICONTI 1971, Vol. L, fasc. 6.
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Proof. For f in X* we apply Theorem 1 to the homotopy
F(x,f) =¢tT(x) +eJ(x) —#. When T is coercive the solutions x. of
T (xe) + eJ(x.) = f are bounded independent of ¢; the closedness hypothesis
completes the proof.

The sum of two quasimonotone operators is again quasimonotone as
we see from Lemma 2. Consequently the sum of ‘a monotone operator with
a compact one is quasimonotone but need not be pseudomonotone if the
compact map is not completely continuous. We recall that by compact we
mean continuous and the image of each bounded set relatively compact;
by completely continuous we mean that weakly convergent sequences are
mapped into strongly convergent ones. In order to apply our Theorem to
the sum of a monotone operator with a compact one we need the closedness
hypothesis to hold. This will be so if A is proper; we have not found any
examples of second order and zero order operators which are monotone and
proper that do not also satisfy (S).. Therefore we give an operator of first
order.

Example: For a function # in L2(S"), S the unit circle in R? (which
may be identified with a periodic function on [0, 27w]) the Fourier series
expansion

[ee]
u(x) = E a, e, o<y <2m,

n=—00

2w

~

is valid, where a, = (2n)™! J u(x) e " dx, as (2m) V2™

is a complete
0

orthonormal basis. For a function # in C°°(Sl), l2]* = Z InaZ] defines

n=—00

a seminorm, and |%|| = o implies that # = g,, a constant function. We

definé H to be the completion of C*(S"/{constants} with respect to this

norm. We define H* to be the completion of those functions f in C*(Sh
(2]

which are perpendicular to all constants (in the L? sense), that is, /= > b, e,

n=—00

by = 0, with respect to the norm [f| = ] | 271 8%]. A natural pairing
between elements in H and H* is provided by the L? pairing (or equiva-
lently /%), namely for % = u -+ {constants} in H and f in H¥, let

2w

~

o) = [ ) [6) dx = 5 ah,

n=—
0

Gy » b, the respective Fourier coefficients.
One may check that this is a well defined continuous bilinear form on
HXxH* In fact H* is the dual space of H under this pairing.



[367] B. CALVERT e J. R. L.. WEBB, Az existence theorem, ecc. 695

For & = u + {constants} and o = v + {constants} with #,v in C®(S"
we define

?n
a(u,v)zj %de.

0

This is well defined, a bilinear functional, which extends by continuity to
HxH. We define A:H —H* by

An,v) = a(u,v) for all # in H.

PROPOSITION: Let g € H* with || g || sufficiently small. Then for every f

in H*, there exists 4 in H such that
Ad +|idllg =f.
Thus, if we define HPSY to be | ueL2SY such that (|uly)® =

|a2| + ; | nd| < oo ;, Sor f in ¥, there exists u in H?(SY such that

%ﬁ— +inf {||u— k||, : & constant function} g =f.

Proof: We show that A is monotone. For # in C®(S")
27
Rea(u,u)= Refg—j; T I/Z[uﬁ]g“:o,
0 .

because % is periodic. Consequently the same holds for % in H by continuity.

o0
A is bijective; we prove that it is onto. For let /€ H¥, then f = , &, ¢,
o] n=-—00

by=0, and the element & = 3, ()" 4,¢"* {constants} is such that A# = f.

n=:—00
Also, one sees that A*(x) = — A (%), so that A* is also onto; this proves
that A is one to one. Hence A™! is a bounded linear operator by Banach’s

inverse mapping theorem. The mapping C: H — H* defined by C (&) = ||u| ¢
is compact.

The proof that the image under A+ C of each ball is closed is a consequ-
ence of the boundedness of A™L,

Now 'let T,x = Ax +#Cx, x in H, o <#<1. We see that each T,
is quasimonotone, H 1 of Theorem 1 holds, and Ty is an odd mapping. Mo-
reover, if T,(x) = f, we have

Ax=f—t|x|g,
so that,
el <HATHALAN + 2120 llgll), which gives, for | gll<||A7},
el < UAINHATH (0 — AT | gl
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Finally, H is a separable Hilbert space, in particular reflexive. Thus all
the requirements for Theorem 2 are met and so A 4 C is ‘surjective, which
completes the proof.

Remark. The mapping A + C above is not pseudomonotone for g ==o.
For, there is a sequence #,, |u,| =1, and #,-—> o weakly. For such a
sequence we have lim sup (Awu,+ Cu, ; u,— ) = 0. If A-+C were pseudo-
monotone this would imply that for all v in H, lim inf (A%, +Cax, , 2, — v) > 0.
This gives (g,—w) =0 for all v in H, contradicting g==o0. A similar
argument can be used to show that (M) is also not satisfied.
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