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Analisi funzionale. — On the representation of mappings of
normal Hausdorff spaces as restrictions of linear transformations ©.
Nota di M. EDELSTEIN e S. SWAMINATHAN, presentata *? dal Socio
G. SANSONE.

RI1ASSUNTO. — Sia X uno spazio normale di Hausdorff e / un omeomorfismo di X
su di un suo sottoinsieme chiuso, e sia A un numero reale con o <A << 1. Si supponga

(o] o]
che nf"[X]=g {ﬁf” [X] & formato da un solo elemento|; esiste allora un omeomor-
1 1 '

fismo [una applicazione continua e biunivoca] 2 di X in un opportuno cubo di Tichonov
QA tale che 4%~ & la restrizione ad % [X] dell’applicazione y — Ay.

INTRODUCTION

Let f be a homeomorphism of a compact Hausdorff space X into itself
with the property that N f”[X] is a singleton. In [4] L. Janos proved that
1

for X metrizable and for any A, 0 <A < 1, there exists a homeomorphism /4
of X into a separable Hilbert space H such that 4" is the restriction to
% [X] of the mapping sending each y € H to Ay. This result has since been
extended by the same Author [5] to compact nonmetrizable spaces by replac-
ing H with a suitable linear topological space L. In both cases the proofs
given by Janos made an essential use of a theorem of Bing [1] on the exten-
sion of metrics from a closed subset of a metrizable space to the whole space.
A direct and considerably simpler proof of the main result of [4] was given
in [2]. In [3] a somewhat more elaborate procedure is used to establish related
results for metrizable, not necessarily compact spaces.

In the present Note we use methods similar to those of [2] and [3] to
prove' related results for normal Hausdorff spaces. The main result of [5]
follows as a corollary.

THEOREM 1. Let X be a normal Hausdor[f space and f a homeomorphism
of X onto a closed subset of X. Suppose N f"[X] is a singleton {x,} and \
n=1

a real number 0 <N << 1. Then there exists a continuous one-to-one mapping %
of X into Q*, where Q = [0, 1] and A a suitable index set, such that Wt
is the restriction to h[X] of the transformation which maps y € Q™ into hy.

Proof: Without restriction of generality we may assume that X = {xy}.
Let {9@,1}.ea be the set of all continuous functions from X to Q such that

P (f[X) =0 and C,=9 l[1]5=0.

(*) This research was supported by National Research Council of Canada Grants
A-3999 and A-5615.
(**) Nella seduta del 18 giugno 1971.



[349] M. EDELSTEIN e S. SWAMINATHAN, On the representation, ecc. 677

Define
Pa1: f[X]UC, - Q
by

Purf (@) if xef[X]
I

Pa1 () = if xeC. .

By the Tietze extension theorem there exists a continuous function Pag: X > Q
which extends @,,1. Thus 9,3 (f (%)) = ¢.,1 (¥) and ¢,4 (C,) = 1. By induc-

tion we obtain a family of mappings {p,.} 7# =1, 2,--- of X to Q with the
~ properties

(D Pasn (f (%)) = Pa,n-1 (%), n=12,3," ",

and

(2) Payu (Ca) = 1.

Set ¢, (x) = I;—)\ Z N Qum (). It is clear that ¢ is a continuous function

m=1
from X to Q. From the definition of ¢ it readily follows that
® Yo (F" (@) = 2", () -

Let /2: X — Q" be defined by (% (x)), = {4, (x). Clearly % is continuous and
it suffices to show that % is one-to-one. Let # and v be distinct elements of
X. We may clearly assume that xy €{x,2} so that non-negative
exist with {f™" () ,/7" ()} contained in X~f[X]. We may further assume
that 7 <#. If /7" () =" (v) = x, then # and v are distinct iterates of x
and, by (3), 2(@)=N\""/%(u)g=4% (u), since m =n would imply u = v.
Suppose this is not the case. Writing #'=f~" (2) and v'= f~"(v) we can
find an index @ in A so that ¢, («) =1, ¢, (f[X]U{?'}) = o. It follows
from (3) that"
$a) = W 20> 4,)

whence 4 (#) 4= /% (v). Thus /4 is one-to-one.

COROLLARY.  If in Theorem 1, X is compact then h:X —Q* CR* is
a homeomorphism and the main result of [5] follows by setting L = R™
We note that the family of pseudometrics {p,}, a € A, on X, obtained by setting
0a (¥, 3) = | . (h () — 2 (A ()| where z,yeX and p, (k@)= {, (x)
satisfies the restatement of the main result of [3] mentioned abhove, involving
pseudometrics.

THEOREM 2. Let X be a normal Hausdor[f space and f a homeomorphism

of X onto a closed subset of X with g FX1=@. Let \ be a real number with
} n=1

0 <A< 1. Then a homeomorphism h of X into Q°, where Q = [o,1] and A

is a suitable index set, exists such that hfh™' is the restriction of the mapping
sending y to Ay.
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Proof: We define A and % as in the proof of Theorem 1. Then we need
only show that % is a closed mapping. Suppose, then, that F is a closed
subset of X and Y = % [F]. Let {y,} be a netin y converging to some y € % [X].
We have to show that y € Y. Suppose not and let x = 27" (3) , 2, = £ (3,).
Then {x,} does not converge to x. Since N f*[X] =@ there is a non-negative

n=

integer 7 such thatuz =f""(x)€ X ~ f[X]. Now {x,} cannot converge
to u; for otherwise % (x,) = 4 (u)=F /4 (x) = y. Let now V be an open neigh-
borhood of # contained in X ~f[X] and such that f”[V]CX~F and
{x4} is frequently in X ~ V. Choose @ € A such that ¢,;: X — Q is conti-
nuous, @, [X ~ V] =o0 and ¢, (%) = 1. Then the function

bo =" DN 00

m=1

vanishes for all z,€ X ~V and {, (x) =21" > o. It follows that {y,} does
not converge to ¥ against our assumption.

The following theorem considers the case when M f*[X] is a finite set
n=1

and can be proved as in Theorem 3 of [2].

THEOREM 3. Let f be a ﬁomeomorpﬁz’sm of a normal Hausdorff space X
onto closed subset of X such that m f [X]={x1,%q,- - ,x,é} Let \ be a real

number with o <A <1 and let p ée z}ze permutation of (1,2, -, k) with the
property that p(i) = j if and only if f(x;) = x;. Then a com‘znuous one-to-one
mapping h of X into E* X Q% where E' is the Euclidean k-dimensional space,
exists such that Wh™" is the restriction to h[X) of the transformation which
assigns to (%1, %a,"+,%z),¥) the element ((Zpay, Xp@) " * *» Xp@) 2 AY).

Remark. We have no conclusive answer as yet to the question whether
the theorems above are true for completely regular Hausdorff spaces which
are not normal.
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