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Analisi matematica. — On the motion of a viscous incompres-
sible fluid in a tube with permeable and deformable wall®. Nota di
Giovanni Prousk, presentata @ dal Corrisp. L. AMERIO.

RIASSUNTO. — Si di un teorema di esistenza della soluzione di un problema misto
per le equazioni di Navier-Stokes corrispondente al moto di un fluido viscoso incomprimibile
in un tubo avente parete permeabile e deformabile.

1. — The problem we shall consider consists in the study of the motion
of a viscous incompressible fluid in a tube with deformable and permeable
wall; this problem is, for instance, encountered in the investigation of the
flow of blood in artificial arteries.

We shall study the two-dimensional case, i.e. the plane flow of the fluid,
since all the results we shall give refer to this case and cannot be extended
directly to flows in three or more dimensions. In order, moreover, to avoid
formal complications, we shall simplify the problem as much as possible,
although the results obtained hold also for more general cases.

Let Q, be the set of the x;, x5 plane: Q,={o0<x, </, ¢ (x1,0) <xy< £}
with boundary T', constituted by: I''={x;=0,0<xy<4},Iy={x=/,
o< <k, o={o<y </,xpg=00,)}, I ={o<x</,x=="F~},
where ¢ (x; ,#) is a function €C'(R) (R ={o<m</,0<¢t<T}), with
o(,5)=9¢(,t)=0. £, is the ‘“tube’” we shall consider, which ‘corre-
sponds to the section of an infinite layer with the plane x3 = o0. I'j and I
represent the initial and final sections of the ‘“ tube ”’, while Iy, and I's are
the walls, which are supposed permeable; we shall assume that I's is rigid
and that I%,, is deformable, its deformation depending on the pressure
exerted by the fluid according to a law we shall illustrate later.

If in the tube there flows a liquid of unit density and viscosity p subject

to a force ]_?(x ,2) (x = {x1, x3}), the velocity Z(x ,£) of the liquid and its
pressure p (x,?) satisfy the Navier-Stokes equations

) .
le MA”:+2”k guj + 7 3;!: =/Ji (J=1,2)
(1.1) .
Bm o
Py 23

Our aim is to determine, under appropriate conditions, the motion of the
fluid (i.e. the solution of (1.1)) and the shape of €, (i.e. the function ¢ (%, , £)).

(*) Istituto Matematico del Politecnico di Milano. Lavoro eseguito nell’ambito del
Gruppo Nazionale per ’Analisi Funzionale e le sue applicazioni del C.N.R.
(**) Nella seduta del 18 giugno 1971.
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<

The problem is ““ well posed ” if we assign:

a) The shape of the tube in the absence of pressure;

6) The relation between the pressure on I'; , and the function ¢ (%, 2);

¢) The initial conditions of the system;

d) Boundary conditions on T, which take into account the permea-
bility assumption on I'y , UT% = T ,,.

Let us examine separately the four conditions given above.

a) We shall assume that, in the absence of pressure,the “ tube” is
represented by Qo = {0 <x; </,0 <y < £}.

6) Let p (%1 ,?) be the pressure exercised by the fluid on the wall T ,,
and suppose that the external pressure is zero. Let, moreover, R denote
the rectangle o<x; </, 0<<#<T, I the interval o <x, </ and K the
set of functions v (x;) such that
Ry

2
1

(1.2) K = Yo (x1) | v € HE (1), <M a.e.g.

The relation between p (x1,#) and ¢ (x;,#) (i.e. between the pressure
and the deformation of the tube) is defined by the following two conditions:

1) 9@ eL”(,T; Hy(D), ¢'(® €L?(0,T; Hy(D) N L (0, T;L2I)),
o' () eK ae., '

II) @@ 45 a solution, Vo ()eL®(o,T; Hi(l), with v (¢) e
€L, T;H™? (), v() €K ac., of the inequality

3 19 Ol Tl DI, —2@ @0 @), +2 j (), o () —

— D o), v @)+ {(p M), o) —¢ @)} dn<o a.e.,

where (, ) denotes the duality between H *(I) and Hj (I) and we have set
24 9
D! g (1) = 3—?{;&;%“% and assumed that p(#) € L2 (o, T ; H 2 (I)).
1 )

Conditions Iy), II;) correspond to a weak formulation of the following
classical problem. Consider the rod o < x; </ fixed at both ends and subject
to a pressure p(x;,#) and let ¢ (xy,7) be the displacement of the point x;
at the time # assume, moreover, that the curvature of the rod at any point
cannot vary too rapidly, i.e. that, denoting by M a constant, depending on
the physical properties of the rod, we have

93(p(x_1,l‘)

SLRSYY
alaxl

The motion of the rod is therefore governed by the equation
R | o
a2 + =7

N4
O,‘l{l
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<M and by the equation

1

. ’ . . P
in the set R"CR in which I o

23 ©
ot axi

in R”=R-—R’. Moreover, ¢(x,,#) satisfies the initial and boundary con-
ditions

9 (71, 3¢ (0, ¢ 3 (/,¢
o, 0) =2 — 0,9 =p(, =200 LD _

and obvious compatibility conditions on R’ R”.

¢) The initial conditions of the system are represented by the velo-

city Z(x,o) of the fluid at the time # = o0 and by the functions ¢ (¥, 0),

9(? (xl’o) aCP (11,0)
of ot

i.e. that the tube is initially at rest.

; as indicated in &), we shall assume that ¢ (1, ,0) = =0

=
d) Denoting by v, the exterior normal to I, the boundary conditions
are expressed by the relations

(I'4> %[Z(x,f)|2+p(x,t):oc,»(x,z‘) (xe,Fi,z':I,2)
(1) P O=0@ Du@ )X u(,d|  (@elyy=Ty,UTy)
(16)  [uw, ) x| = |u(x,0)| (rely).

Equation (1.4) assigns the value of the total energy of the fluid on the initial
and final sections I and T, while (1.6) imposes the condition that the
component of the velocity tangent to I', vanishes. The permeability condi-
tion on the wall I'; , is given by (1.5), B > 0 being a permeability coefficient,
which expresses the experimental law that the velocity of the - fluid
through the wall, which, by (1.6), is orthogonal to the wall, is proportional
to the square root of the jump of pressure: in (1.5) we have assumed that
the external pressure is = o.

We shall prove that the problem defined above admits, for # > o suffi-
ciently small,” a solution in an appropriate generalized sense.

Let us now define some basic functional spaces (),

Denoting by Q an open, bounded, connected set of the x;,#, plane,

satistying the cone property, let 9T (Q) be the manifold of vectors ;(x) =
= {2, (¥), vy ()} infinitely differentiable in Q, with null divergence and

(1) For a more detailed introduction and explanatlon of the functional spaces here
recalled, see [1], Note I.
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such that, when x €3Q, [;(x) XT] = I;(x)[ (7 exterior normal to 3Q); let,
moreover, N° (Q) denote the closure of 9 (Q) in H® (Q) and set

2

@ oy = | 2% @) w; () dQ
@

7=1

"2
> Y 977 (x) Ow; (x)
v, w = dQ.
( Nt (@) 9/ Js

With such definitions, it can easily be seen that N°(Q) and N*(Q) are
Hilbert spaces, with N* (Q) dense in N°(Q).
Let D (A) be the set of elements weN! (Q) such that the linear form

- > >

v—> (%, V)q1q, is continuous in the topology of N°(Q); D (A) is the domain
of a linear, self-adjoint, positive operator A, from D (A) to N°(Q), such
that

() D)1y = (A2, V)0, = (— D, D)o g VueD (A) , ve N (Q).

We now denote by A° the power of order ¢ (¢ = 0) of A and by V, (Q) =
= D (A°?) the domain of A”*;V,(Q) is a Hilbert space with scalar product
defined by

— = . AG/2—> AG/2—>
(u, U>Vc o= A", NI

and is such that
[Vo (), Vg ()16 = Vaa-—e)+80 (2).

Identifying Vo (Q) with its dual space (Vo (Q)), it is possible to define
the spaces V, (Q) for ¢ < 0 setting

V_o(Q) = (Vo (Q))".
Assuming that
7@) ={7<x,t) ;2 €Q}eL?(0,T; Vour (), (6>0), o (£) = {a; (%, 8) ;
xel;}el?(o, T;LAMY),80) ={B(x,?);xels,}€L®(0,T;L*Ts,)},
¢ (x,2) €CH(R)

and setting

2
dou %, ¢
;luj(x,t)%—)—wk (x,2)dQ,,

@@@J@J@F{

Q

J
P

we shall, following the definition given in [1], say that Z(t) = {Z (x,8); x €Qy}



[339] GIOVANNI PROUSE, On the motion of a viscous incompressible, ecc. 667

is a solution in [0, T] of system (1.1) satisfying the boundary conditions (1.4),

(1.5), (1.6) if:
I) #(®)€L?(0,T;Varr (Q)ALT (0, T; Vo (Q)AH (0, T; Va1 (Q0);
o) % (¢) satisfies Vi (2) € L2 (0, T ; Voo (QL), the equation

(1.7) f (o @)+ 0t () —F @ F Dot b, 0 (), 2 (D), F (B} dt =
:—/iz (o (%, z‘)——*uz(x t))}z(x t)><v dr; 4

+jg(x,z)u@c,z)xZ[Z(x,z)|Z(x,z)><3;dr3,¢ dt
F3,<P

where (, ), denotes the duality, Vze€[o,T], between V,_; (Qy) and Vi_4 ().
As explained in greater detail in [1] relation (1.7) is obtained multiplying the
first of (1.1) by /%;, adding, integrating over Q, and [0, T] and bearing in
mind the second of (1.1) and (1.4), (1.5); (1.6).

It is obvious that the flow in the deformable tube is determined by the

-
solution of the system, in the unknown functions « (¢), ¢ (),

(1.8) f{@ O+ BAUD) —F (), @)+ by (u2) , 0 t) , h (B} dt —

/13,

+/B(x,m?’(x,t)x'vl12<x,f>12<x,z>x2dr3,¢

T3,

(oci(x,t)-——%%f(x,z‘))_/:(x,z‘)X:/z,dF,-—f—

d¢

17Dl 19Ol —2 @@ 2@, + z/ (@ (), ¢/ () — (D o(m), 2(m) +
0

"I_/QB(xl!(P(xl?Y)):'Y))qul,(P(xl"n)r'YDX;;l—;(xlxcp<xlyy]>:n>l'
0

(o, m— S (1) gy § dn <o ac.

Vi) €L*(0, T ; Viie (Qp)),v(®) € L2 (o, T ; HA (1)), with v () € K awc., o &)
€L?(o, T; H?(I)), where Z(t) , @ (#) satisfy respectively conditions I)
and Iy) and Z(t) is such that

(1.9) % (0) = 1y
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2. — Let us now give two auxiliary theorems which will be utilized in
§ 3 for proving the final existence theorem.

THEOREM 1. — If f(1)€L2(0,T; Vo1 (Q), o (H) € L% (0, T ; L2 (T)
G=1,2), BAEL®(0,T;L™([y.), 0 (1,5 €CE(R), uy €V, (Qy) and if

—;— <o < % and T is sufficiently small, theve exists one, and only one function

Z(z‘) satisfying 1), 1lg) and the initial condition (1.9).
The proof of this theorem (which actually holds under more general
assumptions on £, than those made above) is given in [1].

THEOREM 2. — [f p(H)€L? (o, T;H* (), there exists a function ¢ (f)
satisfying 1), 11;).

We recall (Lions [2], Ch. 3, § 5.2) that, since the set K defined by (1.7)
is a closed convex set of Hj (I), we can associate to K an operator 8, monotone,
bounded and continuous from H{ (I) to H™?(I) such that

(2.1) K = {v(x) |oeHy (1), B () = o}

Observing that D* is a “ duality operator ” from Hj (I) to H™*(I) and denot-
ing by Pg the operator, from Hg(I) to K, “projection on K”, we have
moreover, in our case,

(2.2) B8 () =D*(v—Pxv)
and, Vw € Hj (1),

(2.3) D'w,w) = |D'e| _, llwl, ==,

)
M Hy®) Ho (D

. < .
(2.4) Pl < Mo

From the definitions given it also follows that, Vew € H{(D),z€ K
(2.5) <D4(w—PKw),z——PKw>go.

Let -} be a basis in Hg (I ; settin,
& g

(2.6) ¢, (&) = ; %, (2) &5 s
we consider the system
@D @O, &)a + @D &)+ AB @) 8= (), 5)

(] =1, -, 7/1)
which, as can easily be verified, admits, V7, a solution, defined in a neigh-
bourhood of # =0, ¢, (¢), satisfying the initial conditions ¢, (0) = ¢, (0) = 0.
We now obtain some a priori estimates which ensure the existence of the
solution on the whole interval [o, T].
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Multiplying (2.7) by &, (#) and adding we have
@8 g U@L+l @O, )+ 7 @ @), 0. () =
=2, 0),

from which follows, integrating between o and ¢€[o,T], and bearing in
mind the initial conditions,

I A CT e K ICAO A L
0
<2 [ 15 Dl oy 19 DDl
0

We have, on the other hand, by (z2.2), (2.3), (2.4), (2.5).

(2.10) (B (@), wy = (D* (w — Px w) , w — Px w) +
+ (D* (w — Pxw), P w) = 1|w~PKw||;§a) = ”Hza +
+lPrwlf, —z2lw|, [Pxwl|, =@, —2Mw]|,
oD Hy{ Hy @ Hy (@ Hy(D)

Hence, introducing (2.10) in (2.9),

) 1Ol 1Ol 27 [ 19 @l U6 O, — 2 My dn<
0

¢

=z [12@l o lle W, dn
(.)/ 0

From (2.11) it follows that

2.12 S "G <M ,  su N0 < M,,
(2.12) b lle <>”Lz o 1 OSIET” @ ( '>”H§(I) 2

T
[, ar=m;
p 2
with M; independent of 7.

It is therefore possible to extract from {¢,} a subsequence (again
denoted by {¢,}) such that

(2.13) hm P (l‘) @ hm P (@) o' (@)
(OT H2 2y L (0 T; L2 1y
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in the weak-star topologies and

(2.14) lim g,() = ¢,

7 —>00 L?(0,T; H (1))

in the weak topology.
From (2.9) it also follows, bearing in mind (2.2), (2.3), (2.5), (2.12),
that

9 2> [E @O, 6O =[O0 — P o), ) dr =
0 0

T
- j (D" (64 () — Px 0 (1)), 9 () — Px 0 D) dt -+
0

+ j (D% (9} () — P 0 (1)), P 0l () dr =

0
T
= [le O — Px e Ol , &
0

and, consequently,

(2.16) nl_lfg lon () — Prou (2 ”Lz (0,T;H(2, @) =¢c
that is
(2.17) lime, () —Pi.(8), = _ o
n—>00 L% (0,T;H2 (1)
Hence
(2.18) lim B (¢, (2)) = lim D* (9, (£) — P; @, () s = _, O
100 n—>00 L?(0,T;H™2 (1)

On the other hand, by (2.14),

(2.19) lim (e, (@) , = B e (@)
n—»00 L%, 1)

T;H™
in the weak topology and we have therefore
(2.20) B ) =o.
Hence, bearing in mind (2.1),
(2.21) 9'(r) e K a.e. on[o,T].

Let v (#) be any function €C' (o, T ; Hj(I)), with v€ K a.e. and set

(222) PO=2508 . wO=2L0s.
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Multiplying (2.7) by &;(#) + «; (¢), adding and integrating, we obtain,
since 8 (z,) = o,

(2.23) j (@ (1) + D* u (1) — 2 (1) » 00 () — 0 () I =
0

¢

— f — (B (@ (1)) » 7 () — i () iy =

0
— [ B @n () — B (@ (1) » 20 (1) — 91 () .
0

Hence, B being monotone,

(2:24) 12 DlFe ) 100 Dl —2 @@ 0 @)s +

L% @ Hy (D)
+ 2 f {@n (n) 5 @ (0)) — (D* @ (), s M) + (2 (), 20 (1) — @ () } dy < 0.
0

Let 9 () be an arbitrary function € L'(o,T), with & >o; it follows
from (2.24) that

T

T .
' 2 2 '
f 1% O,y + e Ol )0 () dr— / (Bn0), 0 D)5 B (Ot +

+2 f @) f (@ (), 9 () — (D% @ (1), 20 () +
0

0

+ @) v () —e.()}dnds <o.

Letting # — oo, we have then, by (2.13),

(2.25) f U9 O, +le Ol )9O dt—2 f (0, v @), 90+

42 [ 5) f (@), g — (D o (), o () +
0 ]

+ @M, v —eMm)tdnds <o.

Since the space of the functions v (¢) given by (2.22) is dense in that of
the test functions of (1.7) and & > o is arbitrary, from (2.23) it follows that
@ (£) satisfies II;); by (2.13), (2.14) ¢ (¢¥) satisfies also condition I;) and
the theorem is therefore proved.
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3. — Let us, finally, prove the following theorem.

THEOREM 3' - ].f l|f<t>|IL2(0,T;V0_1(Q¢)) g Ml ’ ” BA(K)”LOO(O,T;LOO(I‘{%’(#)) g MZ

Vo () satisfying 1), o, (£) € L? (o, T ; L ) ’Zo € V5 (Qp), then system (1.8)
admits, for T swficiently small, a solution satisfying the initial condition (1.9),

provided % <o < % .

We introduce the transformation ¢ =S (¢), from Hi_ (o,T; H} (D)
to itself (Hi_ (o, T; Hg(I)) = {v|v () e H (0, T ; Hi (), v (0) = 0}), with

3
S =]1IS: defined in the following way.
i1

@ =8, with § () eH}_ (0, T; Hi (1)), I (¥) e Hi_ (o, T ; HI (1)),
¢’ (#) projection on K a.e. (K defined by (1.2)) of ¢ ().

b) P S, (lTJ), with ;(z‘) satisfying conditions I,), II,) (in which ¢ (#)
has been substituted by ¢ (#) and the initial condition (1.9). The existence,

pr (&), of such Z(Z) is guaranteed by theorem 1. Observe that by the
assumptions made, we have

G1 B, V.0, Hulm, §n, D, 0% v |, (xn,8,8| e L*(R),

¢) @ =353 (Z), with ¢ (¢) satisfying I,) and the inequality

(3-2) 19 Oy T 10 Ol — 2@ @00, +

¢

2

0

@' @), o' () — (D o (), v () +

l
+/B(x1’$<xl)n>)n>;<x1!J’(xliy]))n)x%l;(xl:qj(xl"’7):7])['
0
..(y (xl,n)—ﬁ’%l’_“’”) dxl%dngo a.e.

Vo (H) €L (o, T; Hi (1), with v()eK ae, o (H)eli(o,T;H (). By
(3.1) and theorem 2, such a function exists.

It is now evident that #he problem of finding a solution of system (1.8)
15 equivalent to that of proving the existence of a fixed point ©* for the transfor-
mation ¢ =S ().

Let us prove, at first, that S is weakly continuous, i.e. that, if {{,} is
a sequence such that k

(3-3) lim ¢, () = 4@
; #=—>00 H(0,T ;Hy ()
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in the weak topology, then it is possible to select from {{,} a subsequence
(again denoted by {{,}) such that

(3.4 lim S (b, () = lim 0,() . = _ o)
7 —>00 n—>00 H™(0,T; Hy(I)

in the weak topology, with
(3-5) ¢=5S().
We observe, at first, that, as may be verified directly, S; is weakly con-

tinuous. Observe moreover that, setting x,==S, (Qj,,) = 51 S5 (§,,), it follows
from the proof of Theorem 1 and the assumptions made that

36 lw @l M,

0 1 =
0,T; V1@ NNLT0,T;V _(Q5 NNHY0,T; Vg _1(Q=))
Vn o ‘bn d’n

with M; independent of 7 (in the sequel, we shall always denote by M;
quantities independent of 7).
Hence

[PRGI M,

<
O.T5 Vo1 20(R5 )
n

and, choosing 0 = —‘I‘— +e(e>0),

3.7) RG] M,.

<
(O,T;Vc+(1/2)_.25(9$ »
n

From (3.7) it follows that

(3-9) 6y (2 s B (1, 2, < M.

L4(R)
Setting x; = §; , x2=£zw+$n<i1,f>, iy (&1,8 ,8 =

= ;t: (il y &9 i:%l’z—)— -+ J)n &1, 0, t) (so that the functions z:;, are defined

for o<& </,0<é<k,0o<¢<T, we obtain from (3.6), (3.7) (since the
s 3 Pl P
A A T
formly bounded),

functions ‘¢, , are, by the assumptions made, uni-

—>
. i, (¢ <M
(3.9) 12, ¢ )”LZ(O,T;v6+1(90))QL°°(0,T;VG(QO))nH1(0,T;vG_1(£zO)) =

—
i, (¢ =M.
” - ( > ”H(1/4>+E(O’T;Vc+(1/2)‘—25(90)) = 5

48. — RENDICONTI 1971, Vol. L, fasc. 6.
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It is therefore possible to select from {;7),,} a subsequence (again denoted
by {;7),,}) such that

- —
(3.10) lim 4, (¢) = i (2,
—>00 L3(0,T; V44 1(Qp) NHL0,T;V_1(Q)
1_ —_ — >
mm #, (¢ = i (¢
nsoo ( > L°°(0,T;vc(90>) (

in the weak and weak-star topologies respectively.

Since 6 > —j{ , the embedding
HY% (0, T ; Vosam—2e () CHY* (0, T ; Vg (Q)) CLA (0, T ; Vi Q)

is completely continuous and we can therefore assume that

— -
(3.11) lim %, (§;,0,%) fﬁ(il,o,z‘)
7 —>00 L*(R)

in the strong topology.
On the other hand, bearing in mind that {, () € K,
(3.12) lim 2% _ %

n—> 00 ox1 CWR) o1

in the strong topology and

3y, 29

(3.13) lim & — 2% gy

Of poogy o nsoo 3 LOR) Ox°

in the weak-star topology, with L[j = 51(¢) (by the weak continuity of Sy).

.- ol =ty ) ;
Setting # (%), 22 ,%) = 4 {2, b 271 ,t) , it can then be directly
\ =g (%1,7)

verified, by (3.10), (3.11), (3.12), (3.13), that Z(z‘) satisfies equation (1.7),
with @ = § = S1(¢), ¢ defined by (3.3).

By (3.8) and the proof of theorem 2, the sequence {¢,(#)} of solutions
of the inequalities

(3-14) IO lag, T 10O, — 2@, 20), +

¢

~

+20J

A
-l-fﬁ(qu;n(xu”))ﬂl) Z(xl"‘ljn(xl,n) ’ W)X7$”IZ¢(X1,$n<x1 ﬂ]) :n)]'
0

&), n(n) — (Do (n), v(n) +

(oo — ) gLy <o

on
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is such that ¢;,(#) € K a.e. and

315 lle.@l <Ms , le®l

L®©,T;H ()

<M;,.
L? 0, T3 H] ) N L™ (0,T; L2 @) ’

Hence, analogously to (2.13), (2.14),

(3.16) lime, () = o , lme) = o

L0, T ; HA(D) n—>00 L%0,T ; LX(1)
in the weak-star topologies and

(3-17) lime,) = o'

GBI % (K 3 2 )

in the weak topology. Relation (3.4) is therefore proved.

If now in (3.14) we let # — oo, we obtain (3.2); this can be proved bear-
ing in mind (3.8), (3.12), (3.16), by the same procedure used to deduce (1.3)
from (2.24). Since ¢ (#) obviously satisfies also condition I1), we conclude

that ¢(#) is a solution corresponding to Z(Z), ie. @ =S3(u) =S3S, @) =
=535251(4) =S (§). The weak continuity of S is therefore proved.

Finally, we observe that, since ¢ (¢) satisfies condition I1), when
”('I)@)”HI(O,T;Hﬁa)) is sufficiently large we have

(3-18) e @l < @l

HY(0,T; Hy (1) HYO, TS H ()

By Tychonoff’s fixed point theorem, there exists then ¢* such that
¢* = S (¢*). The theorem is therefore proved.
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