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Matematica. — A Picone integral identity for a class of fourth
order elliptic differential inegualities. Nota di D. R. DUNNINGER,
presentata @ dal Socio M. Piconk.

RIASSUNTO. — Estesa la cosiddetta Picone integral identity a certi operatori a deri-
vate parziali del quart’ordine, se ne traggono teoremi di tipo sturmiano per le soluzioni di
equazioni competenti a tali operatori, nonché diseguaglianze di un tipo dovuto a Wirtinger
e limitazioni inferiori per gli autovalori di un.parametro da cui dipendono le equazioni omo-
genee relative agli operatori considerati, con condizioni di nullitd, alla frontiera, della solu-
zione e di un certo operatore su essa, lineare del second’ordine.

1. INTRODUCTION

Suppose # and v are, respectively, solutions of the equations
(') + cu=o0
(AY)Y +Cv=o0

in the interval (x;,%p). If v5=0 in (%1, %,), then Picone’s integral identity
[1, p. 266]
Ly |2 au'v ——Auv’)rzz/[(a~—A) 42+ (C— ¢) 12)] dx—f—/A(u’——— %v’)zdx
is valid.

The principal application of (1.1) has been in the proof of a more general
comparison theorem than that given originally by Sturm [1, pp. 224-226].

Generalizations of (1.1) to second order elliptic differential equations
have been obtained by Picone [2], Kreith [3—4], Dunninger [5] and Dunninger
and Weinacht [6].

It is the purpose of this paper to present a generalization of (1.1) to a
class of fourth order elliptic differential equations and a class of related elliptic
differential inequalities. As an application of such an identity we shall obtain
Sturmian comparison theorems under different hypotheses than those obtain-
ed in [7-11]. As further applications we shall present a Wirtinger-type
inequality associated with the differential equations and lower bounds for
the first eigenvalue of related eigenvalue problems.

2. THE PICONE INTEGRAL IDENTITY

The linear elliptic differential operators / and L defined by
lu = A (aAn) — 32
% (al\ot) — cu A ?

2

0
Lo = A (AAv) —Co or) o,

(*) Nella seduta del 18 giugno 1971.
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respectively, will be considered in a bounded domain R in 7-dimensional
Euclidean space E”, with a piecewise smooth boundary 9R. The real-
valued functions @ and A are positive in R and of class C* (R) and the real-
valued functions ¢ and C are continuous in R. The domains 9, and 9y, of /

and L, respectively, are defined to be the sets of all real-valued functions
of class C* (R).

THEOREM 2.1. If ued;,ved. and if u/zusC2 (R), then

(2.1) J%(” b, a(éﬁv))ds+fA%[i<v§;i~ug ﬂ ds +
2R

v
R

f%— (Au Av — av Au) ds =
3R

w 2
grad w — - grad v| —

:f[(A——a) (Au)zv_{_ (¢ —C)u?] dx —|—f[2AA;i

R

—A (Au — % Ay)z} dx —[—f % (vlu — ulw) dx
. R

where 3[an denotes the exterior normal derivative.

Proof. Two applications of Green’s second identity yield

(2.2) f [u a(gjw — al\u g—ﬂ ds = f uln dx — f [a (Aw)® — cu?] dx
3 R

3R
and
? 2 2 ] AA

- e () 2
3R
ﬂAAvA( ) Cu| dx fLLydx

14

R R

Adding these two identities together and making use of the expressions
2 A 2 / 2
AAvA (%) =AQuP+2A 7” lgrad u—% grad v‘ —A (Au—%Av>

(2.4)
3 <u2> u du ut v
. = 2
on
we readily arrive at (2.1).

In what follows, some of the computations are simplified and slightly
more general results are obtained if, instead of basing our results upon (2.1)
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directly, we use the following related identity:

THEOREM 2.2. [f #€C?*(R),v €Dy and wulveC? (R), then

u® 3(AAv) Av
(2.5) “J? o d“rfAT
oR IR

ﬁ v ou — U i
v I on

ds+fA%u—§gds=
R

_ f [A (Aw)p— Cu?] dx +

2 2 2
—{—f{zA% lgradu—%gradv, —A(Au—%Av) J dxr — (%« Lvdx.
R R
Proof. The identity (2.5) readily follows by either setting ¢ = ¢ = o
in (2.1) or by substituting (2.4) into (2.3).

3. STURMIAN COMPARISON THEOREMS

We begin with the following preliminary result.

LEMMA 3.1.  [f there exists a nontrivial real-valued function u€C?(R)
which satisfies

uw=0 on IR

M [u] = J [A (Aw)? —Cu?] dx < o

R
then there does not exist a v € 1, which satisfies
Lv>o0 m R
(3.1) v >0 o 3R
Av <o in R.
Proof:  Suppose a solution v of (3.1) exists. Since Av <o in R and

>0 on 3R it follows (using the maximum principle) that » > o in R.

Consequently (2.5) is valid and readily implies, in view of the above hypo-
theses, that

2 : 2
on[%]—f%—Lvdxz—j[ZA%‘gradu—égradv —
R R

—A(Au—%Av\)ZJ dx > o.

u u .
As a consequence, grad » — ~ gradv = o and Au— — Av =0 in R and

therefore, #fv = £ in R for some nonzero constant 4. However, this latter
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condition cannot hold since # = 0 on 9R whereas v ==0 on 9R. Hence no
such solution » can exist.

THEOREM 3.1. Suppose 3R € C2.  If there exists a nontrivial real-valued
Sunction weC? (R) which satisfies

(3-2) u = g—z =0 on 3R
(3-3) M[x] <o

then every v € Dy, which satisfies

Lv>o in R
v>0 Jor some x€R

Av <o n R

must vanish at some point in R unless w is a constant multiple of v. Moreover,
of Mlu] <o, then v must vanish at some point in R.

Proof: The function v belongs to one of two classes: either » << o for
some x € 9R, or v >0 for all x €9R. If v <o for some x €9R, then together
with the assumption v > o for some x €R, we have that » must vanish at
some point in R. (Note that this result is independent of any hypotheses
concerning 7z and any differential inequalities satisfied by # or ). On the
other hand, if v > 0 on 9R, it follows from Lemma 3.1 that » = o for some
x € 9R. This, together with the assumption Av < o in R, implies (using the
maximum principle) that » > o in R.

Let H, (R) denote the Sobolev space, which is the closure in the norm
l|-]l, defined by

32
2

axz.

Ga) = [lufet X [[DtuPar , Di=
R R

of the class C° (R) of infinitely differentiable functions with compact support
in R. :

Since 9R € C? and « satisfies the boundary conditions in (3.2), it is known
[12, p. 131] that € I, (R). Let {#,} denote a sequence of C;’ (R) functions
converging to # in the norm (3.4). Since #,, vanishes in a neighborhood of
3R and v > o in R, it follows that #,,/v is at least of class C*(R) and therefore
the identity (2.5) is valid. Consequently, under the above hypotheses we
obtain from (2.5) that

’ —A (Aum _— ”7"' Ayﬂ dx

(3-3) M[um]:—f{zAé;i ‘grad um—%”i grad v
2t

2
—i—fu;”—Lvdxzo.
K
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Since A and C are bounded, there exists a positive constant K; such that

| M [22,,] —M [«] ] gKlf[AumA(um——u) -+ Aul (u,, — o) | dx

R

-} Klfl”m(”m_%> + o (thyy — 1) | dx

R

which yields, upon applying the Schwarz inequality, the estimate
(36) M [2,] —M [2]| < Ku (22 + 1) ([l24 Iy + 2elly) || 0 — 22l -

Since || #,, — #||,—> 0 as m — oo, we obtain from (3.6) that M [z,,]— M [«]
as m — oo and therefore from (3.5), M [#] =>o0. If M[«] > 0, we obtain a
contradiction in view of (3.3), and therefore M [#] = o.

Let B denote a ball with B C R and define

Qs [1n] = ~f[zA% [grad 1, — 2 grad o — A A, — %2 A0 de
B

Setting w = »/v and w,, = u,,/v and using the first expression in (2.4) we have

Qs [14,,] = f [A (A2, — AA oA (,,0,,)] do .

B

Since Av is bounded, there exists a positive constant Ks such that

| Q8 [#m] — Qs [2]] ngflAumA(um——u)+AuA(um—~u)| dx
K [ [t 10 — )]+ A [ (o — 2]

which yields, upon applying’ the Schwarz inequality, the estimate
|QB [”m] - QB [Zt] l < Kg 72 (” U ”2,3 + ” %”2,]3) ” U — %”2,3

+ Ko <” Um ”2,13 ”wn _—w‘nz,B + ”w ”2,3 ” U — %“2,]3)
where the subscript B indicates that the integrals occurring in the norm (3.4)
are to be evaluated over B only. Since v==0 in B, it follows from the

definitions of =, and w that ||w, —wl],;— 0 as ||%,—u«|,— o and
consequently, Qg [#,] — Qs [#] as 7 — co. Finally since

0 < Qs [#,] <M [2,]
it now follows that Qg[#] = o, and therefore grad u——%gradv: o and

Ay — % Av=o0 in B. Since B is arbitrary, #/v = £ in R, for some nonzero
constant 4.
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To prove the second statement, we note that if M [#] < o, then the same
proof as above leads immediately to the contradiction M [#] >0. This
completes the proof. ‘

Remark. The technique used in the proof of Theorem 3.1, namely, the
introduction of an appropriate Sobolev space, was motivated by some recent
works of Allegretto [13] and Swanson [14], in which this device was used
in connection with Sturmian theorems for second order elliptic equations
and systems.

Our main result now follows.

THEOREM 3.2. Suppose 3R € C. If there exists a nontrivial u € D, which
satisfies

3.7 uln < 0 in R
(3-8) U= —g—% =0 on 3R

Viu] = f[(a —A) (AuP?+ (C—o)w?]dx >0

then every v € Dy, whickh satisfies
Lv>o0 in R
v>0 Sfor some x€R

Av <o 7 R

must vanish at some point in R unless u is a constant multiple of v. Moreover,
if V[u] > o0, then v must vanish at some point in R.

Proof. The hypothesis V[#] > o0 is equivalent to

(3.9) M [2] < f [2 (Aw)? — cu?] dx .
R

Since # satisfies (3.7) and (3.8) it follows from (2.2) that the right side of (3.9)
vanishes and hence the condition M [#] <o of Theorem 3.1 is fulﬁlled
The second statement is proved similarly.

Several consequences of Theorem 3.2 are now considered.

COROLLARY 3.1. Suppose 3R € C2. If there exists a nontrivial u€9D,
which satisfies

ulu <o m R
o

w=-2 —o on 9R
on
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and if v € D1, satisfies
Lv>o in R

>0 Jor some x€R
Av <o  for some x€R
then either v or Av must vanish at some point in R unless u is a constant

multiple of v. Moreover, if V [u] > 0, then either v or Av must vanish at some
point in R.

COROLLARY 3.2. Suppose SR €C?. If C>0(C == 0) in R and if there

exists a nontrivial u € D, which satisfies

uln < o n R

uzglzo on 2R
77

Viu] =o

then every v € Dy, which satisfies

Lv >o in R
(3.10) v >0 for some x€R

Av=o0 on 23R
must vanish at some point in R unless u is a constant multiple of v. Moreover,
if V[u] > o, then v must vanisk at some point in R.

Proof. 1If v==0 in R, then it follows from (3.10) that » >o0 in R.
Defining w = AAw, it follows that w satisfies the system

Aw > o (Aw == 0) in R
w =0 on 2R

and therefore (using the maximum principle) w < 0 and hence Av < 0 in R.
Theorem 3.2 now implies that = is a constant multiple of ». The second
statement is proved similarly.

The next result is concerned with replacing the integral inequality
V[#] =0 by pointwise inequalities and in relaxing the assumption A > o
in R.

COROLLARY 3.3. Swuppose SR € C®. Suppose a>A>0,C>¢ in R
and u € D;, u == 0 in any open subset of R. If either

(O= in R

and y satisfies
ulu < 0 in R

3 ,
%:_u_:o on R
on
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or
a>A and c¢=F=0  for the same x€R

and u satisfies

lu=o0 in R
9,

u:l:o on SR
7

then every v € D, which satisfies
Lv>o in R
v >0 Sor some x€R
Av <o in R

must vanisk at some point in R.

Proof: Clearly V [u] > o is implied by the pointwise conditions a > A,
C>=c¢ in R. Moreover, it is readily seen that the second conclusion in
Theorems 3.1 and 3.2 remains valid if A > o0 in R. Since # == 0 in any open
subset of R, it follows that V [#] >0 when C == ¢ in R. In the case ¢ > A
and ¢==o0 for the same x € R, it follows that V [#] = o only if Az = 0 in
some nonempty open subset S C R. Since ¢==0 at some x, € S, it is easily .
verified that the differential equation /2 = 0 is not satisfied at x,. Consequ-
ently, V [%] > o in this case also, and the conclusions follow from Theorem 3.2.

The previous results admit a generalization in which the solutions of
ulu < o in R satisfy the mixed boundary conditions

0
u=0 |, Au—l—a%zo on 2R

.. o
where 0 << a < -+ oo (oc = + oo denotes the boundary condition % = o>-

However, the results are “ weak " in the sense that the conclusions with respect
to o apply to R rather than R. For the weak theorems, 9R is required only
to be piecewise smooth.

In this direction, we shall be content to state a typical result, leaving
its proof to the reader.

THEOREM 3.3. If there exists a nontrivial u €D, which satisfies

ulu < o m R
u=o0 |, Au—l—oci—i:o on R, (o<a<+ o0)
Viu]=o

and if v €Dy, satisfies
Lv>o0 in R

(3.11) v >0 Sfor some x€R
Av <o  for some x€R

then either v must vanish at some point in R, or Nv must vanish at some point
in R.
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4. WIRTINGER INEQUALITIES

By a mere reinterpretation of Theorem 3.1 and a simple application of
the identity (2.2) we readily obtain a Wirtinger inequality analogous to the
type considered by Beesack [15] for second order and fourth order ordinary
differential equations.

THEOREM 4.1. Suppose 3R € C2. I there exists a v € Dy which satisfies
Lv=o0 in R
(4.1) v>0 in R
Av <o in R

Then every montrivial real-valued function u € C* (R) which satisfies

% = g—: =0 on R
also satisfies the inequality
(4.2) IA (Au)? dx > fCuz dx
R R

with equality if and only if u is a constant multiple of v.

In [15] Beesack made explicit use of an associated Riccati transform
in order to establish inequalities of the type (4.2). Although the Riccati
transform is not used explicitly in our work, it is nevertheless implicitly evi-
dent and we refer the reader to [16] where this idea is carried out for fourth
order elliptic differential equations.

Various other Wirtinger inequalities are possible by varying the condi-
tion on v in (4.1) or by varying the boundary conditions on # (see [15],
Lemma 2.1) however, we shall not pursue this matter here.

5. LLOWER BOUNDS FOR EIGENVALUES

As a final application we shall consider eigenvalue problems of the
form
ln = \u in R
(5.1)

9,
u=o0 |, Au—i—oc%zo on R

where 0 << « < - oco.

In particular, we shall derive lower bounds analogous to those derived
by Barta [17] and Protter and Weinberger [18] for second order elliptic
equations.
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THEOREM 5.1. Let A be the lowest eigenvalue with corvesponding eigen-

Junction wu € D, of the problem (5.1). If v is any real-valued function of class
C* (R) which satisfies

>0 m R
Av <o in R
and if
Viu]>o
then
. Lo
(5.2) A zxneﬁl; (7> .

Proof: In view of the above hypotheses, (2.1) implies that
)\fuzdx——fuz <£0—> dx =
v
R R
2 2
=V [«] —f [zA% 'grad u——%gradv‘ ——A(Au——%Av) } dx +
R

—[—foca(%)zdszo

oR

from which (5.2) is a simple consequence.

6. CONCLUDING REMARKS

The techniques of this paper allow generalizations to more general differ-
ential operators, e.g.,
(Z) the non-self-adjoint operators /; and L, defined, respectively, by
Lu=A(adu) + 2 6Au—cu
Liv = A(AAv) 4 2 BAv —Co.

Here the associated Picone integral identity is

[ (25— 2arr [A 2 [ 3 —u] o
R

R

—{—j%—i% (Aw Ao — av Aw) ds =
R
=f[(A———a)(Au)2—!—2(B—~b)uAu—l— (G—C + ¢) ] dx —
g ,
\2 '
—I{A(AuH%Av) + 2 Bu(Bu— 2 Av) + Gu2| de +
J U0

Av 2
_{_sz—;—;gradu—%gradvt dx—l—J%(yllu—%le)dx
R R
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where the continuous function G is chosen so that the following quadratic

form in Au—% Av and u:
\2 \
A(Au——% Av) +2 Bu(Au—%Av) + G2
is positive definite. A necessary and sufficient condition for this to be the
case is A >0 ,AG — B> o.
(%) the operators /2 and L, defined, respectively, by
lou = ED;; (a7 a? Dyu) — cu
Lo = 2D,; (AY A¥ Do) — Co

where the matrixes (2) and (A%) are symmetric and positive definite. Here
the associated Picone integral identity is

2 [0ED, (" @ Dy ) m; — uZD; (AY A¥ Dy 0) m] ds +
oR

—{—f{ZA"jAH D,;, vD;, (%) ,} ds—f[Za" a&’' Dy, uD; un;] ds =

R

ij T [(A%) — (@) (D" dx +
R
+ f% ZA“DWEA’Y(D,- u—2D, y) (D,-%— “ D v> dr —

f zAw D u—"2Dy v)] dx 4 f%(ﬂ/zu——usz)dx
%

where 7 = (1, ,- - -, n,) is the unit exterior normal vector to the boundary 2R.
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