ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

CARLO FRANCHETTI

Admissible sets and Kuratomski's number α

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **50** (1971), n.5, p. 550–554.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_50_5_550_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Topologia.** — Admissible sets and Kuratowski's number α ^(*). Nota di CARLO FRANCHETTI, presentata ^(**) dal Socio G. SANSONE.

RIASSUNTO. — Usando il concetto di insieme ammissibile si dimostra la seguente proprietà del numero α di Kuratowski:

$$\boldsymbol{\iota}\left(cl\,\mathbf{A}\right)=\boldsymbol{\alpha}\left(\mathbf{A}\right),$$

dove cl è la chiusura in una conveniente topologia debole di uno spazio normato.

0

I. METRIC SPACES

Let (X, d) be a metric space. If A is a bounded subset of X we denote by $\delta(A)$ the diameter of A, that is the number

$$\delta(\mathbf{A}) = \sup_{a,a' \in \mathbf{A}} d(a,a').$$

If $a \in X$, r > 0, $A \subset X$ we denote by B(a, r) [B(A, r)] the closed ball with center in a [A] and radius r, i.e. the set

$$B(a, r) = \{ y \in X : d(y, a) \le r \} \quad [B(A, r) = \{ y \in X : d(y, A) \le r \}].$$

Note that if A is bounded, then $\delta [B(A, r)] \leq \delta(A) + 2r$. Let again A be a bounded subset of X, we pose

$$f_{\mathbf{A}}(x) = \sup_{a \in \mathbf{A}} d(a, x).$$

 $f_{\rm A}$ is a real nonnegative functional defined on X which satisfies

$$|f_{\mathrm{A}}(x) - f_{\mathrm{A}}(y)| \leq d(x, y), \quad \forall x, y \in \mathbf{X};$$

i.e. f_A is nonexpansive. A point $a_0 \in A$ such that $d(x, a_0) = f_A(x)$ is called a farthest point to x in A (see for ex. [1]).

A bounded set $A \subset X$ is called admissible if it is the intersection of a family of closed balls. Obviously the intersection of any family of admissible sets is an admissible set. So if B is a bounded set we can define a new set $B_1 \supset B$ as the smallest admissible set which contains B, in other words B_1 is the intersection of all closed balls which contain B. Note that one can generalize the above definition to unbounded sets. In fact call a set $V \subset X$ admissible (in the generalized sense) if

i) WCV, W bounded \Rightarrow W₁CV.

It is easily seen that i) is equivalent to

ii) $\forall B \subset X$, B admissible, $B \cap V$ is admissible.

(*) Work performed under the auspices of the Italian Council of Research (C.N.R.). (**) Nella seduta dell'8 maggio 1971.

551

We can define the set V_1 as above (note that X is admissible in the generalized sense).

It is easy to see that if A is bounded we have

$$A_1 = \{ y \in X : d(y, x) \le f_A(x), \forall x \in X \} = \bigcap_{x \in X} B(x, f_A(x)).$$

We remark that $f_A(x) \ge \delta(A)/2$; so A_1 may also be considered as the intersection of all closed balls which contain A and with radius $r \ge \delta(A)/2$. From the definition of A_1 it follows immediately that if a_0 is a farthest point from x in A, then a_0 is also a farthest point from x in A_1 .

PROPOSITION 1. If X is a separable metric space, every bounded admissible set is the intersection of a countable family of closed balls.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be an everywhere dense sequence in X, AC X a bounded admissible set: $A = \{y \in X : d(y, x) \le f_A(x), \forall x \in X\}$. Consider the set $A' = \{y \in X : d(y, x_n) \le f_A(x_n), \forall n\}$; A' is the intersection of a countable family of closed balls and AC A'. We must prove that A' = A. Suppose that $y \in A'$, then $d(y, x_n) \le f_A(x_n), \forall n$. If x is any point in X, there exists a subsequence of $\{x_n\}$ which converges to x. Continuity of f_A implies then that $d(y, x) \le f_A(x)$.

Suppose that A is a bounded subset of X, let us now consider more generally the set A_c : $A_c = \{ y \in X : d(y, x) \le cf_A(x), \forall x \in X \}$, where $c \ge I$.

For c = 1 we get the above defined set A₁; for every c > 1, A_c is an admissible set which contains A₁. A_c is also the intersection of all closed balls which contain A and with radius $r \ge c\delta(A)/2$.

THEOREM I. If A is a bounded subset of X, $c \ge I$ then

$$\delta(A_c) \le c\delta(A)$$
, in particular
 $\delta(A_1) = \delta(A)$.

Proof. Recall that $A_c = \{ y \in X : d(z, y) \le cf_A(z), \forall z \in X \}$. From the definition of A_c we get: $f_{A_c}(z) \le cf_A(z)$. Hence

(I)
$$\sup_{\substack{z \in A \\ y \in A_c}} d(y, z) \le c\delta(A).$$

So, in order to prove the assertion, it is enough to consider pairs $y_1, y_2 \in A_c$, $y_1, y_2 \notin A$. Suppose that $\delta(A_c) > c\delta(A)$; then there exist $y_1, y_2 \in A_c \setminus A$ such that $r = d(y_1, y_2) > c\delta(A)$. If s is such that $c\delta(A) < s < r$ put $G = B(y_1, s) \cap A_c$. Since $y_2 \notin G$, G is properly included in A_c and so cannot contain all A. (In fact A_c is the intersection of all closed balls which contain A and with radius $\geq c\delta(A)/2$, since $B(y_1, s)$ has radius $> c\delta(A)$, if $B \supset A$ it must be $G \supset A_c$ which is a contradiction). Let $b \in A$, $b \notin B(y_1, s)$; we have $d(b, y_1) > s > c\delta(A)$ which is a contradiction with (I).

Remark 1. Let A be a bounded set in X. We recall the definition of Kuratowski's number α (A) (see [2], pag. 318)

 $\begin{array}{l} \alpha \left(A \right) = \inf \varepsilon \ \varepsilon > o \ \text{such that} \ A \ \text{can be covered by a finite collection} \\ \text{of sets} \ \left\{ \, \mathbf{B}_k \right\}_{k=1}^n \ \text{with} \ \delta \left(\mathbf{B}_k \right) \! < \! \varepsilon \,, \quad k = \mathrm{I} \ , \cdots , \, n \ . \end{array}$

Because of theorem 1 we can choose the sets of the covering in the family of admissible sets without changing the value of $\alpha(A)$.

2. NORMED SPACES

Suppose now that X is a normed space. Theorem 1 may be formulated more precisely:

THEOREM 2. If A is a bounded subset of X, $c \ge I$ then

$$\delta(\mathbf{A}_{c}) = c \delta(\mathbf{A}) \,.$$

Proof. We can suppose $\delta(A) > 0$, c > 1 and prove that $\delta(A_c) \ge c\delta(A)$. We begin to remark that in a normed space if C is bounded then $\delta[B(C, r)] = \delta(C) + 2r$. If

(3)
$$A_c \supset B(A, (c-1)\delta(A)/2)$$

holds, then

 $\delta(A_c) \ge \delta[B(A, (c-I)(A)/2)] = \delta(A) + (c-I)\delta(A) = c\delta(A)$ and so also (3) holds.

So we prove (3): let $y \in B(A, (c-1)\delta(A)/2)$; $\forall x \in X$ we have: $d(y, x) \leq d(y, a) + d(a, x), \forall a \in A. \forall \varepsilon > o$ we can choose $a_0 \in A$ such that $d(y, a_0) < \frac{(c-1)\delta(A)}{2} + \varepsilon$ and so:

$$d(y, x) < \frac{(c-1)\delta(A)}{2} + d(a_0, x) + \varepsilon \leq \frac{(c-1)\delta(A)}{2} + f_A(x) + \varepsilon.$$

Since $I/f_A(x) \le 2/\delta(A)$ we get $d(y, x) < \left[\frac{(c-I)\delta(A)}{2f_A(x)} + I\right] f_A(x) + \varepsilon \le cf_A(x) + \varepsilon$, ε being arbitrary, we have $d(y, x) \le cf_A(x) \forall x$, i.e. $y \in A_c$.

COROLLARY I. If A is bounded c > I, then

 $A_c = B_1$, where $B = B(A, (c-I)\delta(A)/2)$.

Proof. $B \subset A_c \Rightarrow B_1 \subset A_c$ since A_c is admissible. Otherwise every ball which contains B_1 has radius $\geq c\delta(A)/2$, hence $B_1 \supset A_c$.

COROLLARY 2 (see [3]). A bounded $\Rightarrow \delta(A) = \delta(\overline{co}A)$.

Proof. In fact $\overline{co} A \subset A_1$ since A_1 is closed and convex.

Remark 2. Theorem 2 is the best possible as we shall see.

Let X be a set, \mathcal{F} a family of subsets of X such that:

i) $X \in \mathfrak{F}$; *ii*) \mathfrak{F} is closed under intersection; then the map φ defined on subsets of X, $\varphi : A \to \bigcap_{\substack{F \in \mathfrak{F} \\ F \supset A}} F$ is called a C-closure (see [4]). Let \mathfrak{F} consist of a collection of closed convex sets in a normed space X, then if:

$$\delta(\varphi(A)) = \delta(A)$$
 holds $\forall A \subset X$, A bounded,

F contains closed balls hence F contains admissible sets.

Indeed suppose that B is a closed ball, $B \notin \mathfrak{F}$, then $\varphi(B)$ contains properly B and so $\delta(\varphi(B)) > \delta(B)$.

3. NORM DETERMINING TOPOLOGIES

We shall give now some applications of remark I.

Let X be a normed space, Φ a subspace of X^{*} (the norm dual of X). We say that the Φ -topology of X (which we denote by τ) is norm determining (n.d.) with characteristic ν (0 < ν ≤ I) if:

 $\forall x \in \mathbf{X} \quad \sup_{\substack{\varphi \in \Phi \\ \|\varphi\|=1}} |\varphi(x)| \ge \nu \|x\|, \text{ and } \nu \text{ is the greatest possible constant.}$ The following are known results (see [5]):

i) if τ is n.d., $\nu = I$ then every closed ball B is τ -closed (B = \overline{B}^{τ}) and so every admissible set is τ -closed. If $0 < \nu < I$ then $\forall x \in X$ $\overline{B(x,r)}^{\tau} \subset B(x,\frac{1}{\nu}r)$. Consequently:

ii) $\bar{\mathbf{A}}^{\tau} \subset \mathbf{A}_{1/\nu}$.

PROPOSITION 2. If A is bounded, τ is n.d., then:

$$\delta(\bar{A}^{\tau}) \leq \frac{1}{\nu} \delta(A)$$
, in particular $\delta(\bar{A}^{\tau}) = \delta(A)$ if $\nu = 1$

Proof. Follows from *ii*) and theorem 2.

THEOREM 3. Let τ be a n.d. topology on X with characteristic v, A a bounded subset of X, then:

$$\begin{split} &\alpha\left(A\right)\leq \alpha(\bar{A}^{\tau})\leq \frac{1}{\nu}\,\alpha(A), \quad \text{in particular if } \nu=1\\ &\alpha\left(A\right)=\alpha(\bar{A}^{\tau})\,. \end{split}$$

Proof. Put $\alpha(A) = \alpha$, $\varepsilon > o$ arbitrary; there exists a finite family $\{C_i\}_{i=1}^n$ of admissible sets with $\delta(C_i) < \alpha + \varepsilon$ such that $A \subset C_1 \cup \cdots \cup C_n$; hence

$$\bar{\mathbf{A}}^{\tau} \subset \overline{C_1 \cup \cdots \cup C_n}^{\tau} = \bar{\mathbf{C}}_1^{\tau} \cup \cdots \cup \bar{\mathbf{C}}_n^{\tau} \quad ; \quad \delta(\bar{\mathbf{C}}_i^{\tau}) \leq \frac{1}{\nu} \, \delta(\mathbf{C}_i) < \frac{1}{\nu} \, \alpha + \frac{\varepsilon}{\nu}$$

Therefore

$$\alpha \, (\bar{A}^{\tau}) \leq \frac{I}{\nu} \, \alpha = \frac{I}{\nu} \, \alpha(A) \, .$$

COROLLARY 3. If A is bounded, then

(4)
$$\alpha \left(\overline{co}^{\tau} \mathbf{A}\right) \leq \frac{1}{\nu} \alpha(\mathbf{A}).$$

Proof. It is enough to use a result of Darbo (see [3]) which asserts that

(5)
$$\alpha(\mathbf{A}) = \alpha(\overline{co}\mathbf{A}).$$

Suppose now that A is τ -compact and convex, using Krein-Milman theorem (see [6] pag. 439-440) we get $A = \overline{co}^{\tau} \operatorname{ext} A$, where ext A is the set of extremal points of A. So we have:

COROLLARY 4. If A is *\tau-compact* and convex, then

$$\alpha(A) \leq \frac{I}{\nu} \alpha(\operatorname{ext} A)$$
.

Proof. Use (4).

We give an example. If X is an adjoint space, the w^* -topology on X is n.d. with characteristic v = 1. Since the closed unit ball U is w^* -compact, we get $\alpha(U) = \alpha$ (ext U). It is known that $\alpha(U) = 2$ in every infinite dimensional normed space (see [7]). So we have:

COROLLARY 5. If the closed unit ball U of an infinite dimensional normed space is τ -compact for a n.d. topology τ with characteristic $\nu = 1$, then

(6)
$$\alpha (\operatorname{ext} \mathbf{U}) = 2.$$

Remark that if U is weakly compact then (6) follows from (5), but in the general case we must use (4).

References

- [I] J. BLÄTTER, Nächste punkte und weiteste punkte, « Revue Roumaine de Mat. pures et appliqués », 14 (5), 615-621 (1969).
- [2] C. KURATOWSKI, «Topologie», vol. I, Varsovie 1958.
- [3] G. DARBO, Punti uniti in trasformazioni a codominio non compatto, «Rend. Sem. Mat. Padova», 24, 84–92 (1955).
- [4] J. DANES, Generalized concentrative mapping and their fixed points, « Comm. Math. Univ. Car. », II, I, II5–I36 (1970).
- [5] J. DIXMIER Sur un théorème de Banach « Duke Math. Journ. », 15, 1057-1071 (1948).
- [6] N. DUNFORD and J. T. SCHWARZ, Linear operators, part I, Interscience, N.Y. 1958.
- [7] M. FURI and A. VIGNOLI, On a property of the unit sphere in a linear normed space, « Bull. Acad. Pol. Sc. », 18 (6), 333-334 (1970).