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Topologia. — Admissible sets and Kuratowski's number o ©.
Nota di CarLo FrancETTI, presentata ™ dal Socio G. SANSONE.

R14sSUNTO. — Usando il concetto di insieme ammissibile si dimostra la seguente pro-
prieta del numero « di Kuratowski:

o (clA) = a(A),
dove ¢/ & la chiusura in una conveniente topologia debole di uno spazio normato.

1. METRIC SPACES

Let (X,d) be a metric space. If A is a bounded subset of X we denote
by 8 (A) the diameter of A, that is the number

3(A) = sup d(a,a).

a,a! €A

If aeX,r>0, ACX we denote by B(a,r) [B(A,»)] the closed
ball with center in a [A] and radius 7, i.e. the set

Ba,n={yeX:d(y,a) <r} [BAA, ") ={rveX:d(y,A) <r}].

Note that if A is bounded, then § [B (A ,»)] < 3(A) + 27.
Let again A be a bounded subset of X, we pose

fa®) = sup d (a,x).
a€A
fa is a real nonnegative functional defined on X which satisfies
[fa@)—Ffa)| <d(x,9), Vr,yeX;

i.e. f, is nonexpansive. A point g; € A such that & (x, ay) = f, (x) is called
a farthest point to x in A (see for ex. [1]).

A bounded set ACX is called admissible if it is the intersection of a
family of closed balls. Obviously the intersection of any family of admissible
sets is an admissible set. So if B is a bounded set we can define a new set
B1 OB as the smallest admissible set which contains B, in other words By
is the intersection of all closed balls which contain B. Note that one can
generalize the above definition to unbounded sets. In fact call a set VC X
admissible (in the generalized sense) if

7) WCV, W bounded = W; CV.
It is easily seen that 7) is equivalent to
77) VB C X, B admissible, BNV is admissible.

(*) Work performed under the auspices of the Italian Council of Research (C.N.R.).
(**) Nella seduta dell’8 maggio 1971.
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We can define the set V1 as above (note that X is admissible in the gene-
ralized sense).
It is easy to see that if A is bounded we have

M= {yeX:d(y,x) </, VreX} = 0 Blx fi().

We remark that f, (x) > 8(A)/2; so Ay may also be considered as the
intersection of all closed balls which contain A and with radius » > §(A)/2.
From the definition of A; it follows immediately that if 4, is a farthest point
from z in A, then g, is also a farthest point from x in A;.

PROPOSITION 1. If X is a separable metric space, every bounded admissible
set is the intersection of a countable family of closed balls.

Progf. Let {x,}. | be an everywhere dense sequence in X, AC X a
bounded admissible set: A= {yeX:d(y,x) <fa(x),VxreX}. Consider
the set A'={yeX :d(y,x,) <fa(x,),V¥n}; A’ is the intersection of a
countable family of closed balls and AC A’. We must prove that A’ = A.
Suppose that y € A’, then & (y,x,) <fi (x,), V2. If x is any point in X,
there exists a subsequence of {x,} which converges to x. Continuity of f,
implies then that J(y,x) </fa(x).

Suppose that A is a bounded subset of X, let us now consider more
generally the set A,: A, = {yeX:d(y,x) < ¢fa(x), Vx € X}, where
c =1

For ¢='1 we get the above defined set A;; for every ¢>1, A, is an
admissible set which contains A;. A, is also the intersection of all closed balls
which contain A and with radius » > ¢3(A)/2.

THEOREM 1. If A is a bounded subset of X, ¢ > 1 then
S(A) <c3(A), in particular
d(A)=3(A).

Proof. Recall that A, ={ye€eX:d(2,y) <¢fy(2), Vz€eX}. From
the definition of A, we get: fa,(2) < ¢f5(2). Hence :

¢)) sup d(y,2) <cS(A).

y€A,

So, in order to prove the assertion, it is enough to consider pairs y;,¥, €A,
Y1,Y2€A.  Suppose that §(A,) > ¢3(A); then there exist y;,y,€ ANA
such that » =d (51,5, > ¢8(A). If s is such that ¢3(A) <s <7 put
G=B(y,9NA,. Since y,¢G, G is properly included in A, and so cannot
contain all A.  (In fact A, is the intersection of all closed balls which contain A
and with radius > ¢8(A)/2, since B(y,,s) has radius > cd(A), if BDA it
must be GO A, which is a contradiction). Let 6€A, 6¢ B (y,,s); we have
d(b,y)) >s >¢3(A) which is a contradiction with (1).

39*
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Remark 1. Let A be a bounded set in X. We recall the definition of
Kuratowski’s number « (A) (see [2], pag. 318)

® (A) = infe e > 0 such that A can be covered by a finite collection
of sets {B,},_, with 8(B)<e, £=1,--,%.
Because of theorem 1 we can choose the sets of the covering in the family
of admissible sets without changing the value of a(A). -

2. NORMED SPACES
Suppose now that X is a normed space. Theorem 1 may be formulated
more precisely:
THEOREM 2. If A is a bounded subset of X, ¢ > 1 then
@) B(A) =B (A).

Proof. We can suppose 3 (A) >0, ¢ > 1 and prove that §(A,) > c3(A).
We begin to remark that in a normed space if C is bounded then

S[BEC,N]=3C)+27r. If

©)) A D BA, (c—1)3(A)/2)

" holds, then

SA) =3B, —D@A/2)]=8A) + (c—1)8(A)=c3(4A)

and so also (3) holds.
So we prove (3): let y€B(A,(c—1)3(A)/2); Vxe X we have:
d(y,x) <d(y,a)+d(a,x),Va€A. Ve>o0 we can choose g, € A such

that d(y,a0)<£—j~%)—8(~A>— + ¢ and so:

d(y,x)<f_lz)ﬂ+d(ao,x)+€£Elz)gQi*FfA(x)Jra-

Since 1/f(x) < 2/3(A) we get d (5, )< [C2 2B ] L+ e <+

e being arbitrary, we have & (¥ ,x) < ¢f, (x) Vx, ie. y€A,.
COROLLARY 1. [If A is bounded ¢ > 1, then
A, = B1, where B=B(A,(c—1)3(A)/2).
~ Proof. BCA, =B CA, since A, is admissible. Otherwise every ball
which contains By has radius > ¢3 (A)/2, hence B1 DA, .
COROLLARY 2 (see [3]). A bounded = 8§ (A)= 8 (coA).
Proof. In fact coACA; since A; is closed and convex.

Remark 2. Theorem 2 is the best possible as we shall see.

Let X be a set, § a family of subsets of X such that:

v 7)) X€F; 4) & is closed under intersection; then the map ¢ defined
on subsets of X, ¢ : A —>Fm F is called a C—closure (see [4]). Let § consist

>eq

€
FD
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of a collection of closed convex sets in a normed space X, then if:
3(p(A)) = 8(A) holds VACX, A bounded,

§ contains closed balls hence § contains admissible sets.
Indeed suppose that B is a closed ball, B €&, then ¢ (B) contains
properly B and so 3 (p (B)) > & (B).

3. NORM DETERMINING TOPOLOGIES

We shall give now some applications of remark 1.

Let X be a normed space, ® a subspace of X* (the norm dual of X).

We say that the ®-topology of X (which we denote by ) is norm
determining (n.d.) with characteristic v (0o <v < 1) if:

VxeX sup |9(x)| =v| x|, and v is the greatest possible constant.
pED ;

@)=1
The following are known results (see [5]):

7) if v is n.d., v =1 then every closed ball B is 7—closed (B = B")
and so every admissible set is t—closed. If o<v <1 then VxeX

B ,r)T c B(x , LV r). Consequently:
i) ATC Ay, .
PROPOSITION 2. [f A is bounded, ~ is n.d., then:
3(A") < - 3(A), in particular 3(A%)=3(A) if v—=r1.
Proof.  Follows from z7) and theorem 2.

THEOREM 3. Let © be a n.d. topology on X with characteristic v, A a
bounded subset of X, then:

a(A) <aA) <~ a(A), in particular if V=1
«(A) = « (A" .

Proof. Put a(A)=«, ¢ >6 arbitrary; there exists a finite family
{C,-}:.’:1 of admissible sets with §(C,) <« + ¢ such that ACCiU ---UC,;
hence

ACGU- UG =CGu-ul ; 3CH<tsCy<tat S
Therefore »
oc(AT) _{%a:%a(A).

COROLLARY 3. If A 4s bounded, then

(4) % (20" A) < — a(A).
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Proof. It is enough to use a result of Darbo (see [3]) which asserts that
®) w(A) = u (@A)

Suppose now that A is T—compact and convex, using Krein—Milman theorem
(see [6] pag. 430-440) we get A = ¢o" ext A, where ext A is the set of extremal
points of A. So we have:

COROLLARY 4. If A is v—compact and comvex, then
aA) < %oc (ext A).

Proof. Use (4). ,

We give an example. If X is an adjoint space, the w*~topology on X
is n.d. with characteristic v= 1. Since the closed unit ball U is w*~compact,
we get a(U) = a (ext U). It is known that «a(U) = 2 in every infinite dimen-
sional normed space (see [7]). So we have:

COROLLARY 5. [If the closed unit ball U of an infinite dimensional normed
Space is t—compact for a n.d. topology v with characteristic v = 1, then

6) a(extU) = 2.

Remark that if U is weakly compact then (6) follows from (5), but in the
general case we must use (4).

REFERENCES

[1] J. BLATTER, Ndchste punkle und weiteste punkte, « Revue Roumaine de Mat. pures et
appliqués », 14 (5), 615-621 (1969). )

[2] C. KuraTOWSKI, «Topologie», vol. I, Varsovie 1958.

[3] G. DARBO, Punti uniti in trasformazioni a codominio non compatto, « Rend. Sem. Mat.
Padova», 24, 84-92 (1955).

[4]1 ]. DANES, Generalized concentrative mapping and their fixed points, « Comm. Math. Univ.
Car.», 11, 1, 115-136 (1970).

[5]1 J. DIXMIER Sur un théoréme de Banack « Duke Math. Journ.», I5, 1057-1071 (1948).

[6] N. DunrFoRD and J. T. SCHWARZ, Lincar operators, part 1, Interscience, N.Y. 1958.

[71 M..Furt and A. VIGNOLI, On a property of the unit sphere in a linear normed space,
« Bull. Acad. Pol. Sc.», 18 (6), 333-334 (1970).



