ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

IOANA ISTRĂŢESCU

On unimodular contractions on Banach spaces and Hilbert spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **50** (1971), n.4, p. 444–447. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_50_4_444_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On unimodular contractions on Banach spaces and Hilbert spaces. Nota di Ioana Istrățescu, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — In questa Nota sarà dimostrato che se T è una contrazione con $\sigma(T) \subseteq \{z, |z| = 1\}$ di uno spazio di Banach X in sè, i vettori proprii che corrispondono ai valori proprii distinti sono ortogonali; ma quando X è spazio di Hilbert, il teorema di Weyl è valido per T.

1. Let X be a Banach space and T be an operator such that

$$||T|| \leq 1$$

2)
$$\sigma(T) \subset \{z, |z| = 1\}.$$

Call an arbitrary operator T with the above properties 1 and 2 a unimodular contraction (u.c.).

Our aim in this note is to obtain some results on operators which are u.c. defined on Banach spaces and also on Hilbert spaces.

2. Let X be a Banach space and T be a u.c. operator. We use the idea of G. Lumer, that one can construct a semi-inner-product [,], i.e., a mapping from $X \times X$ into C such that

(i)
$$[x, x] = ||x||^2$$

(ii)
$$[ax + by, z] = a[x, z] + b[y, z]$$

(iii)
$$|[x,y]|^2 \le ||x||^2 ||y||^2$$

and that Giles has shown that it is possible to choose a semi-inner-product such that

(iv)
$$[x, ay] = \bar{a}[x, y].$$

We assume that all semi-inner-products satisfy (iv).

We shall follow James in saying that x is orthogonal to y if $||x|| \le \le ||x + ay||$ for all scalar a.

Our first result represents a generalization of well-known result for unitary operator that the eigenvectors corresponding to distinct eigenvalues are orthogonal.

THEOREM I. If T is u.c. then eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

(*) Nella seduta del 17 aprile 1971.

Proof. Let glim be a Banach limit on 1^{∞} and [,] be a semi-inner-product on X. We define

$$[[x,y]] = g\lim \{[T^n x, T^n y]\}$$

which has many properties of the semi-inner-product, i.e., the properties (ii)-(iv). We remark that for each x for which $||T^nx|| = ||x||$ then

$$[[x,x]] = ||x||^2$$

Let x_0 and y_0 such that $Tx_0 = \alpha x_0$, $Ty_0 = \beta y_0$ and thus

$$[[x,y]] = [[Tx,Ty]]$$

by the translation invariance of glim. We have from this

$$[[x_0, y_0]] = [[Tx_0, Ty_0]] = \alpha \bar{\beta} [[x_0, y_0]]$$

which gives that $(\alpha + \beta)$ $[[x_0, y_0]] = 0$. Since

$$\|x_0\|^2 = [[x_0, y_0]] = [[x_0 + ay_0, x_0]] \le \|x_0\| \|x_0 + ay_0\|$$

which shows that x_0 and y_0 are orthogonal. The theorem is proved.

The following theorem gives a method for obtaining examples of unimodular contractions.

THEOREM 2. Let T, S be two unimodular contractions on Banach spaces X and Y respectively. Then $T \otimes S$ on $X \otimes Y$ is a unimodular contraction.

Proof. The fact that $T\otimes S$ is a contraction is clear. The fact that $\sigma(T\otimes S)\subset\{z\,,\,|z|=1\}$ follows from a recent result of M. Schechter

$$\sigma(T \otimes S) = \{ \lambda \mu ; \lambda \in \sigma(T), \mu \in \sigma(S) \}$$

and the theorem is proved.

Remark. The above theorem gives a method for obtaining an example of non-normal operator whose spectrum is the unit circle and consists of point spectrum only.

Indeed, let U be a unitary operator on a Hilbert space such that $\sigma(U) = \{z, |z| = 1\}$. It is known that every point in the spectrum is in approximate point spectrum. Let us consider U in the Hilbert space constructed by Berberian [2] and consider the unimodular contraction T constructed by Russo [6]. The operator $U \otimes T$ is a non-unitary unimodular contraction with $\{z, |z| = 1\}$ in the point spectrum. This example is, of course, connected with Prop. 1.2. of Russo.

3. Our next result refers to the Weyl spectrum. If $\mathfrak{L}(H)$ denotes the Banach algebra of all bounded operators on a Hilbert space H and I (H) is the ideal of all compact operators then the Weyl spectrum of T is the set

$$\omega(T) = \bigcap_{K \in I(H)} \sigma(T + K).$$

We say that Weyl's theorem holds for T if

$$\omega\left(T\right) = \sigma - \pi_{00}\left(T\right)$$

where $\pi_{00}(T)$ is the set of all isolated eigenvalues of finite multiplicity of T. Our result is the following:

THEOREM. If T is a unimodular contraction then Weyl's theorem holds for T.

Proof. For this we use a recent result of Baxley. We must verify the conditions C_1 and C_2 of that paper.

The condition C_1 says that, if $\{\lambda_n\}$ is an infinite sequence of distinct points in $\pi_{of}(T)$ (= the set of all eigenvalues of finite multiplicity) and $\{x_n\}$ is any sequence of corresponding normalized eigenvectors, then the sequence $\{x_n\}$ does not converge.

This condition is clear for our class of operators since every space

$$E_{\lambda_i} = \{x, Tx = \lambda_i x\}$$

is reducing and $|\lambda_i| = 1$ for each $i = 1, 2, \cdots$. The condition C_2 is as follows: for each $\lambda \in \pi_{00}(T)$, $T - \lambda I$ has closed range and index zero.

First we show that $T - \lambda I$ has closed range.

If $H_{\lambda} = \{x, Tx = \lambda x\}$ (which is reducing for T) we consider

$$H = H_{\lambda} \oplus H_{\lambda}^{1}$$

and let $\{x_n\}$ such that $\{Tx_n - \lambda x_n\}$ is convergent. We can show that there exists x_0 such that $\lim (Tx_n - \lambda x_n) = Tx_0 - \lambda x_0$.

Indeed, for each n,

$$x_n = x_n^{\lambda} + x_n^{\lambda, 1}$$

and thus

$$Tx_n - \lambda x_n = (T - \lambda) x_n^{\lambda} \oplus (T - \lambda) x_n^{\lambda, 1} = 0 \oplus Tx_n^{\lambda, 1} - \lambda x_n^{\lambda, 1}$$

But on H^1_{λ} , $T - \lambda$ is invertible, so that $x_n^{\lambda,1}$ has a limit, $x_0^{\lambda,1}$. It is clear that

$$\lim \left(Tx_n - \lambda x_n \right) = Tx_0^{\lambda, 1} - \lambda x_0^{\lambda, 1}$$

and the assertion is proved.

Since $\sigma(T)=\{\lambda\}\cup\sigma(T\big|_{N(T-\lambda)^{\underline{I}}})$ it follows that the index of $T-\lambda$ is 0, and thus C_2 is satisfied.

Remark. Perhaps the theorem is valid for unimodular numerical contractions on Hilbert spaces.

REFERENCES

- [1] J. BAXLEY, Some general conditions implying Weyl's Theorem (to appear).
- [2] S. K. BERBERIAN, Approximate proper vectors, « Proc. Amer. Math. Soc. », 13, 111-114 (1962).
- [3] J. R. GILES, Classes of semi-inner-product spaces, «Trans. Amer. Math. Soc.», 129, 436-446 (1967).
- [4] D. KOEHLER and P. ROSENTHAL, On isometries of normed linear spaces, « Studia Math. », XXXVI, 213-126 (1970).
- [5] R. JAMES, Orthogonality and linear functionals in normed linear spaces, «Trans. Amer. Math. Soc. », 61, 265-292 (1947).
- [6] B. Russo, Unimodular contractions in Hilbert spaces, « Pacific J. Math. », 26 (1), 163-169 (1968).
- [7] M. SCHECHTER, On the spectra of Operators on Tensor Products, « J. of Funct. Anal. », 4 (1), 95-100, (1969).