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Equazioni differenziali. — Bowundedness Criteria for Solutions
of some Second-order Differential Equations. Nota di H. O. TEJuMOLA,
presentata  dal Socio G. SANsSONE.

Riassunto. — Si dimostrano due teoremi di limitatezza delle soluzioni di una classe di
equazioni differenziali non lineari del secondo ordine.

1. Much work has been done by previous authors on the problem of
the boundedness of solutions of second-order differential equations (see, for
example, [1]-[7]). The object of the present note is to give new criteria for
solutions of second-order equations of the form

(1.1) Pdf, D) r+g@) =p@¢,x, 5

to be ultimately bounded. It will be assumed throughout what follows that
the functions f,g and p, which depend only on the arguments displayed in
(1.1), are continuous. The following results will be proved.

THEOREM 1. Let 8 >0, M >o0 be finite constants such that 3, =
=8—M —1>0 and suppose that

(i) the function f(x,y) is such that
(1.2) /@ =8 (ylzn, max|f@)| =1 @);

(ii) the function g(x) satisfies

x

(1.3) Lgr; 'g(i) df = + o0,
(1.4) Lim {g(®)sgnx —2v(x)} > 2M;
|x|—>00

(iii) for all t,x and y,
(1.5) |p(,x,9)| <M.

Then, there exists a constant D ,0 <D < oo, whose magnitude depends
only on the constants 8 and M as well as on the functions f,g and p such that
every solution x(¥) of (1.1) wultimately satisfies

(e) |z®| <D , |4()|<D.

The restriction on p(#,x,%) in (1.5) can be relaxed at the expense of
that on f(x,y) for |¥| =1. Indeed we have

(¥*) Nella seduta del 17 aprile 1971.
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THEOREM 2. Let 8 >0, M >0 be finite constants such that 3, =
=8 —M>o0 and suppose further that

Ay f(x,) is such that
(1.7) fa,nz=s (rl=n, mglf(x,y)l =y(®);

lrl<
(ii) zhe function g(x) satisfies

x

(18) Lim [ £(® de =+ oo,
0
(1.9) Lim {g(#x)sgnx —2y(@®)} >2M,
where e
(1.10) M, = max [4(5 +M)3 1, M];
(iii) for all t,x and y
(r.11) (2,2, 9)] <My2.

Then, there exists a constant D ,0 <D < oo, whose magnitude depends
only on the constants M and § as well as on the functions f,g and p such that
every solution x(f) of (1.1) wultimately satisfies (1.6).

Note that if the left hand side of (1.4) equals -+ co then the condition
(1.3) will be met. Thus conditions (1.3) and (1.4) allow for bounded, as well
as unbounded functions, g (x).

In view of the form of (1.2) one might be tempted to compare Theorem 1
with the boundedness theorems in [3] and [4]. The main point of our result
here is that it concerns the ultimate boundedness property of solutions, which
property includes the notion of the relative boundedness dealt with in [3]
and [4]. Moreover, we do not require here any uniqueness conditions on #, g
and p.

Theorem 2 extends the boundedness theorem given in [2] although,
here, |p(¢,x,9)| is bounded whenever || is.

2. Proof of Theorem 1. The system

(2.1) t=y , V=—f, Ny —g@) + ¢, x,)
is equivalent to (1.1). Let the continuous function V =V (x,y) be defined by
(2.2) V=V +V;
where
(23) CeVi=yrte e,
‘o

if <

(2.4) V2:~ ysgnx) T lyl—lxl .
xsgny, if |x| <|y|
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We shall show that V(x,y) satisfies
(2.5) V(x,y) > +oco as 2243200

and that, for any solution (x(¢),y (%)) of (2.1), -

V= Lim sup | L&D, 7E+8) = V@), 0) %
h—>+0

exists and satisfies

(2.6) V+<—Do if 22(f) +2(5) =D

for some finite constants D¢> o0, D;>o0. As will be clear from the Yoshi-
zawa-type technique employed in [2; § 5] the two results (2.5) and (2.6)
together imply, ultimately, that

22(@) +22() <D
which is (1.6).
To verify (2.5), note from (2.4) that
Vo] < |y|
and thus, by (2.2) and (2.3),

2V =92 —2|y| +2fg<£) dt .

0

In view of (1.3), the right hand side here tends to 4+ co as % + 32 — oco.
The existence of V+ for any solution (x(£),s(£) of (2.1) follows from
the fact that V.= V(x, ) is at least locally Lipschitzian in x and y.
We now turn to the verification of (2.6). Note from (2.2), (2.3), (2.4),
and (2.1) that

(2.7) VE=V1+Vy§,

where

(2.8) Vi=—Ff(x, )2 +ypt,x,),

(0g) Vi — | EWsenr—fx.9)y sgnat+p (¢, % ) sgnx, if |y|<|x|]

[¥] if |x|<|y]
Thus
(2.10) V*<—g(@)sgnx—f(x, )92+ | £, 9] |9+ (v +1) |22, %, )|
if |y| <|x| or '
(2.11) Vi< —f @, 02+ |y + |2 ¢ 7, )
if x| <|y]
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The condition (1.4) implies the existence of finite constants x, > o,
D2 > 0 such that

(2.12) || =xy=gx)sgnx —2y(x) —2M >Ds.
Let
(2.13) xy = max {1, x,, 5, }.

We assert that, for some finite constant D3> o,
(2.14) V¥ <—Dg if |x|=2.
Indeed, if |y| < |x| so that V* satisfies (2.10) and, if |¥| =1, then by
(1.2) and (1.3)
Vi< —g@sgnz—|y|f@,3) (y| =1+ 0+ 2D [2¢ 2,5
<—g@sgnyr—3(ly|—1) +MO+|y]
<—g@)sgnx +2M.
Thus
(2.15) Vt<—Dp if |x| >m;,

by (2.12) and (2.13). Suppose however that |y | < 1. Then on using (1.2)
and (1.5) in (2.10), ‘we obtain

Vt < —g(x)sgnzx + 2y(x) +2M,

so that by (2.12), (2.15) still holds .in this case.

We are now left with the case: |x| < || for which V+ satisfies (2.11).
If we note that |x| = x; implies that |y| >x;, with 21 fixed by (2.13), we
have that

VE< =3y + (1 +M) |yl
=—3y]
by (1.2) and (1.5). Hence V¥ < —1 since | ¥ | =#;; that is,
|x|2x1=>\7+£—1.

This together with (2.15) show that (2.14) holds with D3 = max (1, Dy).

To complete the proof of (2.6), suppose, on the contrary, tha’E |z <
and assume for a start that |y | =2;. Then |y| >|x| and so V* satisfies
(2.11). If we recall the definition (2.13), we get, in the same way as before,

(2.16) Vi<—1 if |y|=x.
The results (2.14) and (2.16) show clearly that
Vt<—Ds if 224s2>2m,

Ds = max (1, Dg). This completes the proof of (2.6) and, as remarked earlier,
the theorem now follows.
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3. Proof of Theorem 2. The procedure here is the same as that used
for Theorem 1. For reasons which have been carefully outlined in § 2 the proof
of Theorem 2 will be immediate as soon as we show that the properties (2.5)
and (2.6) of the function V = V (x, ») hold under the conditions of Theorem 2.

The verification of (2.5) given in § 2 carries over with obvious modifi-
cations. '

In order to verify (2.6), our starting point will be the estimates (2.10)
and (2.11) which are still valid in this case. In view of (1.9) there are con-
stants xy> o0, Dy> 0 such that

(3.1) %] == (g (=) sgnx — 27(x) —2M,) =D,

Suppose also that y,>o0 is a constant such that

(3-2) |y =y = —»2 +M|y| <—1
and set
(3-3) xp=max {I,%,,5,}-
First we show that for some constant Dj > o
(3.4) |2| =% = V* <—Dj.
As before we consider the two cases || <|x|, |x| <|y]| separately.

Let |y| < |x| and suppose that |y | =1. Then on using (1.7) and (1.11)
in (2.10), one shows readily that

3+ M
438y .
If, however, |y| <1, (1.7), (1.11) together with (2.10) yield

V< —g(x)sgnx +

V< —g@)sgnzx +27(®) +2M.

By (3.1), (1.10) and (3.3) it is clear that in either case (3.4) holds.
. Suppose now that |x|<|y| Then |x] =2 = |y| >x =y, by
(3.3). Hence, (2.11) yields

V+£—8*J’2+M[yl
<—1

since |x| >x;. Therefore (3.4) holds always with D, = max (1, Dy).
~Suppose on the contrary that |x| < x; and assume that |y| > ;. Then
|¥| = |x| and so, by (2.11),

Vi< —3,52 4+ M|y|
< —1

since i y| =% = y,. This together with (3.4) shows that
Vt<—D; if 22t >2x),
which verifies (2.6). ‘
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