
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

James Okoye Chukuka Ezeilo

A generalization of a boundedness tkeorem for the
equation

...
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Equazioni differenziali ordinarie. —  A  generalization o f a 
boundedness tkeorem fo r  the equation x  -f- <x.x +  <p2 (x) -f- cp3 (x) — 
=  ip(t, x , x  , x). Nota di James O k oye C hukuka E z e ilo , presen­
tata  (,) dal Socio G. S an son e.

RIASSUNTO. — Per le equazioni considerate in questa Nota, nel caso che oc sia costante, 
cp2 , 9g , siano dipendenti dagli argomenti indicati nel titolo della Nota, sono state date 
alcune «generalizzate» condizioni di Hurwitz [i], atte ad assicurare la definitiva limita­
tezza delle soluzioni.

Il principale scopo di questa Nota é di estendere i risultati precedenti nel caso che cp2 
dipenda da x  e x e il coefficiente oc sia funzione di x  , x , x .

I .  In the equation in the title, which will be referred to in the sequel 
as the equation (E) , a is a constant and <p2 , <p3 and ^ are continuous functions 
depending only on the arguments shown.

In a previous paper [i] it was shown that if ^ is bounded and 93 (#) 
continuous for all x  and if further a, <p2 and <p3 satisfy certain explicitly given 
generalized “ Routh-Hurwitz conditions ” then solutions of the equation (E) 
are all ultimately bounded. The present note which has been inspired by 
an investigation by Harrow [2] (particularly by the remark concerning the 
case I p( f) \  bounded on page 588 of [2]) is directed to the situation when the 
coefficient a in (E) is replaced by bounded functions qq. It turns out that, 
where this class of qq is involved, the boundedness result is readily extendable 
to the much more general equations of the form:

(1.1) ï  +  qq (x , X , x) x  +  <p2 (x , x)  +  q>3 (x) =  <\> (t , x  , x  , x)

in which 93 and are as before but q>1 and q>2 can also depend on the extra 
variables indicated. Indeed assume here that qq, qq , qq and are continuous

in their various arguments; also that 93 (x) , - (x , y  , z) and

~^g(.x >y) exist and are continuous for all x , y  and z. We have 
T h e o r e m . — Suppose that

(i) there are positive constants , A1 such that <  9̂  (x , y  , z) <  ,
fo r  fill a; , y  and

(ii) there are constants S2 >  0 > ^2 ^  0 SMCh

C1-2) <?2 ( x , y ) l y  >  h ( \ y  I ^  A2)
uniformly in x>

(iii) there is a constant A3 >  o, such that 93 (̂ r) <  §3 fo r  | x  | i> A3 
where S3 is a constant such that

(i-3) Si §2 >  S3 >  o,

(*) Nella seduta del 13 marzo 1971.
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(iv) 93 (x) sgn x—  2 v]9 y (at) -> +  oo | x  | -> oo where,

(1.4) t]2 =  max (1 , A2) and  y (T) == max | 92 (x , y) | ,
b! ^ %

(v) y  O  , y  , O) <  o , (* , y) <  o and y  O , y  , z) >  o fo r
all x  , jy z, ■

(vi) I 'I' , x  , y  , #) I <  A <  00 fo r  all t , x  > y  and z.
Then there exists a constant Do >  o whose magnitude depends only on A , 9 , 92 
and  93 such that every solution x  (f) of (1.4) satisfies

(1.5) | * ( O l < D o  , | # 0 0 | < D o  , \% (t)\ <  Do,

fo r  all sufficiently large t.
We shall see in § 6 that the methods can actually be extended to cover 

the case where the function ^ in the theorem satisfies

I <i> ( t , X , y  , z) I <  A +  e  (y 2 +  Z2)1!2

for all t , x  , y  and z, where A >  o and e >  o are constants, with e sufficiently 
small.

2. The notation and procedure to be adopted here for the proof of the 
theorem will be exactly as in [1].

Thus we shall use D ’s for positive constants whose magnitudes depend 
on A , 9̂  ̂ , 92 and cp3, subject to the usual understanding that no two D ’s are 
ever the same unless numbered, while the D ’s: Dx , D2 , D3, • • • with suffixes 
attached retain their identities throughout.

Thus also, coming to the actual verification of (1.5) itself, it will suffice 
(for the same reasons as in § 3 of [1 ]) merely to turn to the equivalent diffe­
rential system derived from (1.1) by setting y  =  x  and z =  x  and to show 
that there is a continuous function V  ( x , y  ,z), satisfying

(2.1) V (x , y  , z) -> +  00 as x2, +  y 1 +  z2 00,

such that the limit

(2.2) V* lim sup 
^->+0

V ( x  (t h) , y ( t  +  h),  z (t +  k)) — V (x (t) , y ( t ) , z  (t))
h

exists, corresponding to any solution (x (t) , y  (f) , z (t)) of the equivalent 
differential system of (1.1), and satisfies

(2.3) V* <  — D x if *2 (f) +  ÿ 2 (f) +  -S'2 (t) >  D2,

for some constants Di , D2.

3. A  function  V. Assume henceforth that all the conditions of the 
Theorem hqld.

Let C =j= max | 93 (x) | and let S >  o be a constant fixed, as is possible 

in view of (1.3), such that 

(3.1) §2 S-T1 >  8 >  Si \
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Also let y_2 (E, , tq) be the continuous function given by

i > m ,
I >  h i ,

and let y3 (x ) be the differentiable function given by

(3.3) X =  j Sgn* ’ if 1*1 ^ 2A 3.
3 ( sin 7^/(4 A3) ( if I I <  2 A3 .

Now let V =  V (x , y  , 2) be the continuous function given by

(3-4) V =  V1 + V 2— V3

where
X  y

?3 (?) d? +  8 (2 J  <p2 (x , ■/)) dv) +  z2) +
0 0

y

+  2 j  4  ?1 (x  > 4 » o) dif] +  2 Sy (p3 (x) + 2  y z ,
0

(3-6) V2 =  x2 , %),

and

(3-7) V3 =  D3 y x 3 (x),

where D3 =  8 A3 82 CI(yS3). The whole point in our proof of the Theorem 
is to show that this function V does in fact fulfill the provisions (2.1) and (2.3).

4. Verification of (2.1).
We shall require the following inequalities:

y

(4-r)  f  v) 9 i  (x , Y] , ° )  dv) >  81 y 2 for all x  , y
J0

(4-2) y (x) <  D ( I x  I +  1) for all x y
y

(4-3) 2 J* 92 (x  > 7î) d7! ^  ^2y 2 — 2 v)2 y (x) — D for all x  , y.
0

The result (4*1) is immediate since ^ > 8 1 ;  and (4.2) follows on combining 
the fact that y (x) <  D ( | cp3 (x) | + 0  (from hypothesis (iv)) with the fact 
that I 93 (x) j <  S3 I ^  I +  D (itself a consequence of hypothesis (iii) and the 
fact that 93 (x) sgn x  >  o for sufficiently large | x  | ).

To verify (4.3) we consider the sign of the function 
y

6 (x , y )  =  2 j  <p2 (x  > 4) dv) —  S2y 2 +  S2 v)| -f 2 y)2 y(x)
0

(3-5) 2 V 1 =  2 j

(3-2) x2 =
if
if
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separately in each of the cases: | y  | <  v)2 , y  >  y)2 , y  <  — y]2. In the first 
case I <p2 I <  y (#)' and so 6 (x , y) >  o. In the case y  >  v)2 write

Jcp2 (x , 7]) dy)
0

“Ha

U  + / ) <?2 ^ ’ y' ) d7l
0 T]2

Io +  Ii ,

say, and note that | Io | <  y)2 y (#), and also, by (1.2), that II >  — 82 (jE2---Y]2)

so that, on combining, we shall have here that 0 >  o. Similarly 0 >  o if 
y  < — y]2 . Hence 0 > 0  always and this proves (4.2).

Turning now to the actual verification of (2.1), observe first from (3.6) 
and (3.7) that

1 V2 I <  I x  J , I V3 I <  D3 I y  I ;

and then also from (3.5), (4-0 and (4.3) that
X

2 Vi >  2 j  <p3 (£)d£ +  §(§2.y2 — 2 7)2 y(x)  — D) 4-S^2 +  h y 2 +  2 8y y 3 (pc)Jr 2 yz  
0

=  S (z +  S-1 ^)2 +  (Si — 8-1) y 2 +  S^1 8 (82 y  +  <p3 ([x))2 +
x

+  S^1 2̂ S2 J  <p3 (Ç) d% — 8 <p2 (x)J— 2 Sv)2 y (x) — D.
0

The term 2 82 J <p3 ©  d£ — (x) — Wo (x) occurring here has already

0been estimated in [1 ; § 5] and the results there (see particularly (5.3) and
(5.4) of [1 ]), show that there are constants D4 , D5 such that

(4.4) W 0 (*) >  2 D4 J 93 ©  dÇ — D 5 ( I * I >  As)
A3 sgnx

Thus, on gathering the various results for Vx , V2 and V3, we have that

(4.5) .3V ±  S ( s  +  S“ 1 y f  +  (81 — 8“ 1) j 2 +  s - i  [W0 (x) — D \ x \ ]  —

— 2 D3 I I  — D,

for all x  y y  and z, where we have taken advantage of (4.2) to replace the term 
— 2 8 Y]2y Or), occurring in the estimate of 2 Vi, by — D ( | ; r |  +  i).

By (4.4), we have that, if x  >  A3
X

W0 (x) — T)x >  2 D4 J* {<p3 (£) — D } d£ — D.
As
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The integral on the right hand side here tends to +  00 as \x \  -> 00, since 
<P3 (x) sgn x  +  °°  as I x  I -> 00 (in view of hypothesis (iv) of the theorem); 
and thus

W 0 (x) — Dx -> +  00 as x  00.

Analogously it can be shown that

W 0 (x) -f- Dx  -> +  00 as # -> — 00

Hence

(4*6) W 0 (x) —  D | #  | -> +  00 as \ x  \ ~> 00 ,

and since Si — S_1 >  o, by (3.2), the result (2.1) then follows at once from
(4.5) and (4.6), for our V.

5. Verification of (2.3). For this part, in line with the remarks in the 
latter part of § 2, we turn to the differential system:

(5.1) ± =  y  , j  =  £ , i  =  — 9X ( x , y  , z) z  — <p2 (x , y)  — cp3 (x)+<\> ( t , x  , y , z)

derived from (i . i )  on setting y  =  x  and z  =  x .
Let , y  , z) =  (x (t) , y  (f) , z (fj) be any solution of (5.1). As in [1] 

the limit V* (see (2.2)), corresponding to (x , y  , z), clearly exists. An elemen­
tary calculation from (5.1), (3.4), (3.5), (3.6) and (3.7) will, in fact, show 
that its value can be set out in the form:

( — +  +  -f- y)  ^ -f  ~D3zx3 (x) + y s g n ^ ,  i f  p | > | * |

(5.2) V * =  j — U i +  Ug — 93 (x) sgn*  — (z <p1 +  <p2) sgn*  -f

( +  D3 ^ 3  (x) +  (pz +  y  +  sgn*) ^ , if | * | >  [ .s'|

where

Ul =  y  <p2 (x , y)  +  {D3 x' (x) —  $9's ( x ) } y 2 +  { 8(p1 (x , y  ,z) —  i } z 2 ,

y

U2 =  y z  [<px (x , y  , o) — <p, (* , y  , 5-)] +  j  (x , •/)) dvj +
0

y

+  y  f f \  (x  . , o) dvj.
Ò

Observe that each of the three components in U2 is non-negative: the two 
integrals as a result of the first two conditions in hypothesis (v) of the theorem, 
and the remaining component because, by the mean value theorem,

y* { ?! (x , y  , o) —  <?! (* , y  , z) } =  — yz2 —  (* , y  , xz) (for some t  in o, i),

< 0 ,

by the last condition in the same hypothesis (v).
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Observe next that the coefficient of z2 in W x satisfies Sqq — 1 >  8S1 — 1 >  o 
by (3.1). From this and the non-negativeness of U 2 it is clear that, if we set

y  ?2 (x > y) + {D3 X3 0*0 — s <Ps (x) } y 2 = u3 (x > y)
then

i — U z ( x  ,y)  — Dg z* +  D ( I y  ) +  | z  | ) , if | z  | >  | x  |

(5-3) V* <  j — XJ3 ( x , y ) —  D6a2 — <p3 (x)sgnx  +  | (p2 (x , y) \  +

( +  D ( 1 ^  I + | ^ | + i )  , i f  \ z \ < \ x \

where we have now used the results | y31 <  1 , | 4* I iS A and have also used 
the fact of the boundedness of cpx to majorize the term — ztpx sgnar by D |a| .  

From the definitions of y3 and D3 in § 3 it is readily checked that

(5.4) { S<p; (x) —  Dg (x) }y2 <  ss3y2

for all x  , y.  There is equally no difficulty in verifying from the definitions 
of 7] and y (x) in (1.4) that

(5-5) — y ?2(x ’y) + 192(x >y)\ < —Mr 2 — I) + s2

(5-6) — y <p2 ( x , y )  <  —  82y 2 +  ■/)! +  7)2y (x).

In  the case of (5.5), for example, consider the function

w , E= — y<p2 ( x , y )  +  \<?gx , y) \  +  82 O 2 — \y  | ) — \  rfc — 2 tj2 y (x).

If \ y \  <  v)2 then clearly

w ,  <  —  (42 —  O tO O  —  Oil —  r 2) Iy  I < ° ;
while if I y  | >  t)2 then by hypothesis (ii) of the theorem, y  <p2 =  | y  \ • | <p2 | 
and thus

— r p 2 +  I ? 2 1 =  —  ( I y  I —  O I ? a I
<  — 82(1^1 — Ol r l >

from which it follows that

W x <  — 82 t]| — 2 y)2 y (x) <  o.

Hence W i <  o always and this proves (5.5). The inequality (5.6) can be 
verified analogously by considering the function

W2 =  — y<p2 (x ,y)  +  8 2 — S2t]2 — y)2 y (x).

From (5.4) and (5.6) it follows that

— U 3 (fc , y) <  —  D 7y 2 +  t)2 y (x) +  D,

and from (5.4) and (5.5) that

—  \ J z { x , y )  +  I <p2 (x ,X) I <  — D 7jy2 +  2 y)2y (ar) +  D ( | ^  | +  i)

30. — RENDICONTI 1971, Voi. L, fase. 4.
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where D 7 — S2 — SS3 >  o, by (3.1). Hence, by (5.3),

I —  (D7_y2 +  D6 z2) +  v]2 y (x) +  D ( | _y | +  | z  | +  i ) , if | z  | >  | x  \ , 

V* <  — (D7 y* +  D6 s2) — <p3 (x) sgn x  +  2 t)2 y (x) +

I + D ( | j ) / | + p |  +  l ) i f | s , | < | A : | .

But, by (4.2), iî \ x \ < \ z \  then y 09 <  D ( | z  | +  1); and so our latest 
inequality for V* may also be set out in the form:

( — (D7 y 2 +  D es2) +  D ( \ y  I +  I z  I +  1) , if \ z \  > \ x  \ 
(5-7) V* <  ! — (D7y 2 +  D6 s2) — {<p3 (x) sgn x  — 2 v)2 y (x)} +

\ +  D ( | t | +  M + i)> if | * | ^  | * | .

A t this stage it is useful to recall the hypothesis (iv) which implies, 
among other things, that there is a D such that

(5*8) { *?3 (x) sgn x -— 2 t]2 y (V)} <  D,

for all x. From (5.7) and (5.8) it is clear that whichever of the two estimates 
in (5.7) is applicable to v , a constant D 8 exists such that

(5-9) V * <  — I if y* +  s2 >  D | .

Suppose now, however, that

(5-10) / + ^ < D s

Under such circumstances | x  | >  D 8 would imply that | x  | >  | z  | in which 
case the lower estimate for V* in (5.7) is applicable. In other words, if (5.10) 
holds, then so long as \ x  \ >  D8, we have that

V* <  — { 93 (x) sgn x  — 2 y)2 y (x) } +  D.

Since <p3 (x) sgn ^  — 2 tj2 y (x) -> +  00, as | x  | -> 00, it is clear from this 
inequality that there is a constant D 9 >  D8 such that

(S-ïO V* <  — I, if y 2 + ^ 2 < D 8 but | # | >  D 9 ,

The results (5.9) and (5.11) show that

V* <  — I ,  if *2 + ^ 2 + S 2 ^ d 1 +  d J

which thus verifies (2.3) and also concludes our proof of the Theorem.

6. Further remarks'. There is no difficulty in extending the present 
methods to an equation (i . i )  in which ^ satisfies

(6. ï)i I 4  ( t , x  , y  , z) I <  A +  s (y2 +  r̂2)1/2,

with A >  o and s >  o constants and e sufficiently small. Indeed the repla­
cement of hypothesis (vi) of the theorem by (6.1) does not affect the proof
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until the two estimates in (5.3) for V*, the right hand side of each part of 
which will now have to be augmented by a term of magnitude not exceeding 
sD (y 2 +  z2). However, since the dominant term involving y  and z  on the 
right hand side of each of the two estimates in (5.3) can be majorized by an 
expression of the form

— D (y 2 +  a2),

it is clear^ that, if s is chosen small enough, the presence of these additional 
terms in V*, under the new hypothesis, will not aifect the sign of each of the 
dominant terms, in question, so that the rest of the estimates for V* can be 
validated once again under the new condition (6.1).

The absence of a term  of the form —  Dx2 at any stage in our estimates 
for V* has been responsible for the difficulty in extending results to the case 
where ij> satisfies the more general condition:

l 4> ( t , x , y , z ) \ < A  +  S (x2 + y 2 +  z2)V2.
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