ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIOVANNI PROUSE

On the solution of a non-linear mixed problem for
the Navier-Stokes equations in a time dependent
domain. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 50 (1971), n.3, p. 293-298.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_50_3_293_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1971_8_50_3_293_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1971.



‘[149] GIOVANNI PROUSE, O the solution of a non-linear, ecc. 203

Analisi matematica. — On the solution of a non—linear mixed
problem for the Navier-Stokes equations in a time dependent domain.
Nota I di Grovanni Prouse ©, presentata “” dal Corrisp. L. AMERTO.

RIASSUNTO. — Si considera, per le equazioni di Navier-Stokes in un dominio bidi-
mensionale dipendente dal tempo, un problema misto con condizioni al contorno non lineari
e si enunciano un teorema di esistenza ed unicitd della soluzione e tre teoremi ausiliari, le
cui dimostrazioni vengono date nelle successive Note II e III.

1. INTRODUCTION AND STATEMENTS

In the present note and in the following two we shall again consider the
mixed problem for the Navier-Stokes equations studied in [1], assuming
however that the domain in which the motion of the fluid takes place depends
on the time # with a given law: Q = Q@) = Q,.

Let, precisely, Q; be an open, bounded set of the x; , xy plane, depending
on ¢ and let I' () = I'; be its boundary, which we shall assume is constituted
by the lines :
Ii={xi=0 , A<xs<h}

Py={m=17, <z <k}
ip={o<n </ , 2= b (x1,8), (E=1,2)}.

As is well known, the motion in Q, of an incompressible fluid of viscosity

u and density I subject to the external force ]?(x O ={fi(x, 8, fo(x,)}
(x = (21, x9)) is governed by the equations

2

d14; oty p .

S ey e + 5 = G=1,2)
(1.1) )

B

=1 o

where 7 (x,8) = {uy (x,%),uy(x,2)} denotes the velocity and p (x,#) the

pressure. Denoting by v, the outside normal to I';, we shall consider the
boundary conditions defined by the relations

S %uf(x,t) +p(x, D) =0 (x,D (€T, 0<¢<T, i=1,2)
> — —
(12) 4 p(x,0) =B(x,0) ulx,)Xv | u(x,H)Xv,| (x€Ts,, 0<t<T)
— - —
| (x,8)| = |ulx, )XV, (xel,, o<z <T).
*) Istituito Matematico del Politecnico di Milano.

Lavoro eseguito nell’ambito del Gruppo Nazionale per I’Analisi Funzionale e le sue
applicazioni del C.N.R. '

(**) Nella seduta del 20 febbraio 1971.

21. — RENDICONTI 1971, Vol. L, fasc. 3.
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As explained in greater detail in [1], the boundary conditions (1.2) assign

the value of the “ total energy ” % |Z|Z + p of the fluid on the initial and

final sections, I't and TI'y, of the “tube” €, and express the relationship
between the pressure and the velocity of the fluid through the ¢« wall”’ Ty,
which is assumed to be permeable.

From experimental data it appears, in fact, that the velocity of the fluid
through a permeable wall is orthogonal to the wall and is proportional to the
square root of the jump of pressure. In the second of (1.2) it has obviously
been assumed that the external pressure is zero.

Finally, the third of (1.2) interprets the condition that along I'; the
component of the velocity tangent to I'; vanishes; this follows, on I's,, from
the limit layer theory and, on I'i and T's, from the assumption that, on the

initial and final sections, the velocity # coincides with its normal component.

Our aim is to give an existence and uniqueness theorem of the solution
‘of equations (1.1) satisfying the boundary conditions (1.2) and the initial
condition

(1.3) Z(x, 0) = Zo(x) (x € Qo) .

Let us begin by giving some definitions and basic notations.
Let Q be an open set of the (¥, x;) plane satisfying the cone property

and denote by 9T(Q) the manifold of vectors Z(x) = {9, (x) , v3(x)} indefini-

tely differentiable in €, with null divergence and such that [Z(x)[ = [:(x)x7|
when x € I' (boundary of Q). Further, denote by N°(Q) the closure of 9T(Q)
in H°(Q) and observe that, by the definitions given, we can set

r9

(@, gy = (0 » Dyoiy = / 3 0 (x) w; () dQ

7=1

(1.4) ¢

— > - = T2 dv;  Ow;
— — G %
(v, W)y = (¥ ,w)H;(Q) = /j);l ey dQ,

since, for functions belonging to 9T (Q), the H{- and H'-norms are equi-
valent; moreover N'(Q) is dense in N°(Q).

‘Let D(A) be the set of elements e N'(Q) such that the linear form

— —> —>
0> (%, 0)y,q, is continuous in the topology of N%Q); it is then possible

to define a linear, self-adjoint, positive operator A, from D(A) to N°(Q),
such that

(1.5) (%, Vg = A2, V) Vu € D(A), veNY(Q).

‘Let us denote by A° (6 real > 0) the power of order ¢ of A and by
Vo (Q) = D(A”®) the domain of A®?; V,(Q) is a Hilbert space with scalar
product defined by

- - 0/2—> G/,2~>
(1.6) (u, 7J>VG(§2) = (A""u , A ”)No(m .
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We have N'(Q) = V,(Q), N%Q)= V,(Q), H(Q)DV,(Q) and the inter-
polation property holds
(1.7) [Va (), V()]s = Vaa—o+pe (Q),

where [J1, 3]y (1, 32 Hilbert spaces) indicates the Hilbert space a0 el
which is intermediate between J; and I3 according to the definition given
by Lions [2]. Identifying Vo (Q) with its dual V{(Q), we can define V_,(Q)
by setting Vi(Q) = V_;(Q). We now give the definition of solution of
equations (1.1), (1.2), to which we shall always refer in what follows.

Assuming that f(5) = {/(x,2);x€Q} € L2 (0, T; Vo_s(Q), a(t) —
={o,(x,£);2€} € L0, T;LXT)), 8 %) = {B(x,2); xEI‘gt}GL (0,T;L(Ts,)),
§; € C! and setting

- > - 2
b(t,u,v,w) :/ > ui (%) w w; (x) dQ
. f}t i,7=1 g
we shall say that Z(t) = {Z(x ) x €} is a solution in [0,T] of equations
(1.1) satisfying the boundary conditions (1.2) if ©:

a) u#({)eL?0,T; Vet (Q) NLY©0,T;V, (Q)) N H' 0, T ; Vo_i(Q));

b) ;(z‘> satisfies, Vi @) €L?(0,T; Vi_o(Q)), the equation
(1.8) [0 ey + uiane Ty +
Yo, u@), u@ @) — (FO, A} dt =

= / 2.; [(a (x, l‘)—~u1(x t))/z(x zf)><v,dF +

+’/g (x,9) Z@c,z)x?,]Z(x,z) X;{Z(x,z‘)XTtng,,g dt

T3

where (,) denotes the duality between V,_;1(Q,) and V;_,(Q).
Relation (1.8) is obtained directly from the first of (1.1), multiplying it
by a test function /%;(#), integrating over Q,x [0,T] and bearing in mind the

second of (1.1) and the three conditions (1.2). It is, in fact, V;Z ZEVl(Qt),
with Az € Vo(Qy), by (1.4), (L.5),

— (Qu, hyyop = — Qu, /‘>L2(9,) = (u, }‘>H3(Q,) = (u, }Z>N1(Q,) =

— (A.% y ﬁ)No(Qt) = (A% y h)VO(QI) y

(1) The meaning of the notations L?(0, T ; V. (), etc. is obvious, bearing in mind
the smoothness assumptions made on ¢;.

21*
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since the integral /ST” XZdI‘f vanishes by the second of (1.1) and the
. :
r

¢
third of (1.2). Moreover

r r

2 N 20 2\ > —
fZ Lo ta0, = [ P dn, = 3 [ (a— ) ixar, +
g j=1 %% i=1 2

¢

I, r;

s s s > > >

-{-,/ BuuX v X ve| X v dly ;.
fa,,

In the following paragraphs we shall prove some results from which will
follow directly, by means of the Leray-Schauder principle, the existence of a
“solution (in the sense indicated above) of (1.1), (1.2), in a sufficiently small
neighbourhood of # = o, satisfying the initial condition
(1.9) 2 (0) =y
A uniqueness theorem of the solution will also be proved.

Such results are expressed by the following theorems which we here state.

— —

THEOREM 1. Assume that g(£) €L? (0, T ; Vo_1(Q), #y €V, (L) and
that the functions ;(x,,t) whick define I's,; are continuous for o< x,<<7, 0<t<T
together with their derivatives dV;[ot, d,[3x,. There exists then, if 0< o < 1/2,

a function Z(z‘) el? (©,T;Ver1(Q) N L” (0, T; Vo (Q) N H! (0,T; V1 ()
satisfying, Vi () €L2(0,T; Vi_o(Q), the equation

(10)  [{@0, K0y + b (M@, 5O) — (50, h@)} dr = o

and the initial condition (1.9).
Let us now denote by S: "= S(;) the transformation defined in
~ the 'following way. Given any function ;(z‘) €L, T; Vo1 (Q) O

L0, T; V. (Q)NH 0, T; Vei(Q), we call #()=So(?) the function
(which, as can easily be seen, exists, by Theorem 1) belonging to the same

functional space as ;(z‘) Vand satisfying (1.9) and the equation
w0 [0, T )+ eiar 0,7 0) — (7, Fe) ar =
(I ,

v; (x,2)

2

o “/;é(z;(t),;(t),;(t)) +2; / (ocz(x,f)—

0 Ty

)ZOC’t) X;Z d].-‘,—l—
| —]—/B(x,z‘);(x,l‘) X v |o(x, 1) XZIZ(x,t)x;:ng,t%dt
Ty s

Vi (5 el (0, T ; Vioo(Q).
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We have then:

THEOREM 2. If 1€ Vo(Qo), F(2) €120, T;Va_1(Q)), os(2)€L(0,T;L¥T),
B@® eL”(©,T; LTs,)) and o, /ox,, ob,[ot are continuous, then, for
1/4<06<1[2, the transformation S is completely continuous from Wr,z=
=1%0 VT Vet Q)N L®0,T; Vo (Q) N H (0, T ; Vo (Q)) in dtself.

Consider now the transformation, depending continuously on the para-

meter A€ [0, I], = S(_;, ) defined in the following way. Given any

function ;/)(z‘) € Wr,s, we call % @ =S (77(1‘) ,\) a function belonging to
Wr,s and satisfying the conditions

(1.11) Z(o)zmz,

T

(L12) | (0, B O) + u Q@ h@) =M (D, h@)} dt =

0

:_x’/ b(2,0(0), 0, h(®) +%,1/ (ocl»(x,z‘)— ”lf”))Z(x,z)xT,dr,.Jr

0 T

~
i

+/B(x,t);(x,z‘)leg(x,z)lez(x,gx\jdp&tsd,’

Ts,;

Vi) €L (0, T; Vi_o(Q).

By the definitions given, it is obvious that 5(77, 1) = S(?T)
The following theorem holds:

THEOREM 3. Swuppose that all the assumptions of Theovem 2 are vertfied
and let Z(Z) be any solution of the equation Z(z‘) =35 (Z(t) v N. Then if T is
sufficiently small, Z(t) is bounded on [0, T] uniformly with respect to N, i.e.

—
there exists a constant Mi, independent of w and of N\, such that, Vi€[o,1],
T T

ity = [ 1@ o, d + Sup @I} o, + [ 17O g, de <M.
T,0 o134 0<z<T G\ . , c ¢

0 - 1]
Moreover, S (v (¢),0) = o0, which means that equations (1.11), (1.12), written
—-
Jor \ =0, admit the only solution u ()= o.

It iss(.‘)bvious that, by Theorems 2 and 3, the transformation S defined
above satisfies the assumptions of the Leray-Schauder principle. Hence

the functional equation ;(t) = S(Z(z‘)}, which evidently corresponds to
(1.8), (1.9), admits a solution Z(t) € Wy, and we obtain the following

THEOREM 4. Under the assumptions made in Theorem 2, there exists in
lo, T, for T sufficiently small, a solution of equations (1.1) satisfying the initial
condition (1.3) and the boundary conditions (1.2), with 1[4 <o <1/[2.
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We shall, finally, prove a uniqueness theorem for the solution thus
obtained: ’

THEOREM 5. There exists in [0, T] (T sufficiently small) at most one solu-
tion of (1.1) satisfying conditions (1.2), (1.3).

The proofs of Theorems 1, 2, 3, 5 will be given in the following paragraphs.

Observation 1. The theorems given can be extended, without any
modification, to more general sets £, than those considered. We may, for
instance, assume that the ““ tube ”’ branches, i.e. that its *“ wall ”’ is constituted
by the lines xy = {; (v, 4), 23 = {;(x,,7) (0 <x; </, i=1,---,5) such
that a parallel to x, directed as x, “enters "’ the tube through ¢} and “ leaves ”
it through {¢7;.

Observation I1. The results obtained here will be utilized in the note
(to appear on these Rendiconti) “ On the motion of a viscous incompressible
fluid in a tube with permeable and deformable wall ”, in which we shall
assume that the shape of the wall is not a given function of #, but depends

on the pressure exercised by the fluid on the wall itself according to an
appropriate law.
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