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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 marzo J97J 
Presiede il  Presidente B eniamino Segre

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Spectral Continuity and Permanent Sets in Topolo­
gical Algebras. Nota di Edward B eck en ste in , G eorge Bachman e 
L aw rence N arici, presentatar) dal Corrisp. G. Zappa.

R iassunto . — In questa nota X denota un ’algebra topologica H ausdorff com m utativa, 
completa, complessa, localmente w -convessa con unità.

Si ottengono condizioni sotto le quali le derivazioni di X proiettano X  dentro il 
radicale di X. Inoltre si danno criteri secondo i quali X  è un ’algebra di Banach. È dim o­
strato che per Q -algebre im barilate (« barreled ») X, se O è una collezione aperta nel piano 
complesso, allora l ’estensione principale di Q in X  è aperta. È anche dim ostrato che un fi 
semplicemente connesso è perm anente riguardo a X, così si generalizza il risultato di 
Ackerm ans (« On the Principal Extension of Complex Sets in a Banach A lgebra », Indaga- 
tiones M athem aticae, 1967, 146-150). A lla fine si dim ostra che Q -algebre im barilate X 
possiedono continuità spettrale e si presenta un esempio di un ’algebra di Fréchet che non ha 
continuità spettrale.

Throughout this paper X and Y denote H ausdorff com m utative complete 
locally ^ -c o n v e x  complex topological algebras with identities denoted in 
each case by e. In  certain cases we shall further hypothesize th a t X be a  
Q -algebra (i.e. th a t its set of units be open) or th a t X be barreled.

T hrough the use of a certain m ap <Jj, some of whose properties are 
discussed in Sec. 1, some conditions are obtained (prior to Theorem  3) 
under which derivations of X m ap X into its radical. W e also obtain some 
criteria under which X is a B anach algebra (Theorems 3 and 4). In  Sec. 2 
we show (Theorem  5) th a t for barreled Q -algebras X, if Q is an open 
subset of the complex plane C, then its principal extension in X ,M  (£2 , X),

(*) Nella seduta del 20 febbraio 1971.
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is open in X. W e also show (Theorem 6) th a t if Q is sim ply connected, 
then Q is perm anent w ith respect to X, thus generalizing the result of 
Ackerm ans [i, p. 147]. In  Sec. 3 we show th a t barreled Q -algebras X 
have spectral continuity (Theorem  7) and then give an exam ple of a Fréchet 
algebra which is not a Q -algebra and which fails to have spectral continuity.

I. The mapping

L etting 911 denote the set of closed m axim al ideals of X, we identify 91c 
and T , the collection of nontrivial continuous complex homomorphisms 
of X, and assum e th a t 9tb carries the weakest topology which m akes the 
m aps x  : 91b -> C taking M e 9tb into x  (M) continuous for every r e X  and 
M e 9tb. C (91b) denotes the locally in—convex H ausdorff algebra of continuous 
m aps of 91b into C with compact-open topology and pointwise operations. 
Note th a t when 91c is com pact (as will be the case when X is a barreled 
Q -algebra), C (91b) is a Banach algebra. L et <]j denote the m ap * -> F of X into 
C (91b). W e now investigate some of the properties of Am ong other things 
we prove th a t when ^ (X ) is closed in C (91b), where X is a barreled Q -algebra, 
then derivations of X m ap X into its radical.

T heorem  1. I f  X  is barreled,, then 41 is continuous.

Proof. A neighborhood base a t o for the com pact-open topology on 
C (91b) is given by positive m ultiples of sets of the form V  =  {x  | sup | *  (F) | ^  1} 
where F  is a com pact subset of 91b, so it suffices to show th a t the sets 

1 (V) are neighborhoods of o in X. A ny com pact subset F  of 91b is o (X ', X )-  
bounded, so F  is contained in the polar E° o f some barrel E  in X. By 
hypothesis E is a neighborhood of o, so F° =  tjfo1 (V) D E 00 D E, and the 
proof is seen to be complete.

I f  X is a barreled Q -algebra, then 91b is com pact [4, p. 56]; hence the 
gauge p L3Z of 91b° is a  continuous seminorm. The spectral radius ra (x) of 
x  e X is defined to be supMe g^ |ar(M )| when this exists; otherwise we say 
th a t ra (x) =  00. In  C (R), the continuous real-valued functions on R, the 
reals, w ith com pact-open topology, for example, all unbounded functions 
have infinite spectral radius since the closed m axim al ideals of C (R) are in 
I —  I correspondence w ith R.

T heorem  2. I f  X is a barreled Q—algebra, then rG (x ) ~  0*0 fo r  every

Proof. W hen ra (x) =  o, the result is trivial. I f  r0 (x) >  o, then 
0xlro (.x )) 6 by  the definition of ra (x). Since 911 is compact, then 91b° is a 
barrel and therefore 91b° =  {x  | (x) A 1}. Consequently (xjrG (x)) P  i
or -̂ 911 ('*') — r° ("’')• bo see th a t the reverse inequality  holds, suppose th a t 
*  6 a°3il° where a >  o. Thus | (x/d) (M) [ ^  i for every M e 91b and it follows 
th a t ra (x) <  a, whence ra (x) A p  (x).
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Suppose th a t X is a barreled Q -algebra so th a t 01b is com pact and 
C (01b) is a B anach algebra w ith respect to sup norm. Consequently 
if X =  (X) is a closed subset of C (01b), then X is a Banach algebra. It
follows from Theorem  2 th a t X will be a closed subset of C (01b) if and only 
if X is complete w ith respect to p ^ . Since C (01b) is semisimple, so is X. 
Letting  D : X - > X  be a derivation, it follows im m ediately th a t D : X -> X , 
x  -> (^D) x  is a derivation of X. Hence, according to the result of Johnson [3] 
for semisimple com m utative complex Banach algebras with identity, D m ust 
be trivial. Thus, for every i e X ,  (iJ/D)a;==Ô so, for any x  and any M € 01b, 
ÇDx) (M) =  o and it follows th a t Dx belongs to the radical of X. W e sum m a­
rize this as: If  X is a barreled Q -algebra in which X is a closed subset of 
C (01b), then any  derivation of X m aps X into its radical; consequently if X 
is semisimple, the only derivation of X is the trivial one. O ur next theorem  
provides a  case where X is a semisimple B anach algebra.

THEOREM 3. I f  X is a barreled Q-algebra and the adjoint of , ij/ : (X )'-> X / 
is an onto map , then X is a semisimple Banach algebra.

Proof. Since ip is continuous by  Theorem  1, it follows th a t <J/ is conti­
nuous and th a t 1]/ (X ') C X '. Since, generally, ker <]; =  Im  (<J/)°, in this 
case we have ker i|; =  (X ') =  {0} so th a t m ust be 1 —  1. Thus, since 
ker <]) =  R ad X, it follows th a t X is semisimple. M oreover since <(/ (X ') =  X ', 
it follows [2, p. 517, Prop. 8.6.3] th a t as is weakly continuous, therefore 
<Jr1 is weakly continuous. Thus ^ is an isomorphism and a homeomor- 
phism  (since X is bornological). Since X is complete, the result follows.

Definition 1. L et C (S) denote the Banach algebra of continuous, com­
plex-valued functions on the com pact H ausdorff space S w ith pointwise 
operations and sup norm. A  closed subalgebra W  of C (S) which separates 
points and contains the identity  is called a uniform algebra.

If  X is a semisimple barreled Q -algebra, then ra is a norm  and we 
denote the topology it determ ines by

Theorem 4. Let X be a semisimple barreled Q-algebra with topology 0  
and continuous dual X '. Then X is isometrically isomorphic to a uniform  
algebra i f  and only i f  Or is a topology fo r  the dual pair  (X , X ').

Proof. F irst assum e th a t 0 r is a topology for the dual pair. Since X 
is barreled, then 0 — t  (X , X ') where t  (X , X ') denotes the M ackey topology. 
Since X is first countable when it carries 0 r and 6 r is a topology of the 
dual pair, then 0 r =  t  (X , X '). Thus 0 — 6 r and clearly the m ap
^ : X -> X - C C  (01b) taking x  into x  is an isom etry as well as an isom orphism  
as rG(x) =  | |Æ||. Since X is complete, X is closed in C (01b), and since X 
clearly contains the identity  and separates points of 01b, it follows th a t X is 
isom etrically ; isom orphic to a uniform  algebra.

Conversely, suppose th a t X is a uniform  algebra. W e begin by  proving 
th a t &r C t  (X , X ') so th a t 0 r is a topology of the dual pair if and only if 
a  (X , X ') C 0 r . To see th a t 0 r C t  (X , X '), let H denote the g  (X ', X )-
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closure of the balanced convex hull of 9E in X '. According to [6, pp. 30-31], 
rG (x) — sup^ € H I h (pc) I . M oreover, since 91L is compact, H =  9ic00 is compact 
in X ', and we see th a t €>r is the topology of uniform  convergence on the 
balanced convex com pact set 91c00, which im m ediately implies the desired 
result th a t 0 r C t  (X , X 7). Clearly a (X , X 7) C 6 r if and only if for any
/ e X 7 there is an s >  o such th a t {x  | r0 (x) fg s} =  e 9R°C { /}° . To com­
plete the proof of the converse, we show th a t this last condition holds for 
any  uniform  algebra X C C (S).

If  f e  X 7 then denote a continuous linear extension of /  to C (S) by / .  
Associated w ith f  there is a regular Borei m easure p. on S such th a t

f  (pc) =  j  x  (s) dfji for any  x  € C (S) and || jji || <  00. Identifying S and the
s

m axim al ideals of C (S), let S n  X denote the set of m axim al ideals
{ M f i X | M e S } ,  and observe th a t S n  X C 9E. Thus ( i/ || [jl ||) 9Tc° C 
C (i/|!,[x||) (S n X)°. If  x  6 (1 /|| pL H) 9R°, then \x  (s) \ <  i/||(x || for all ^ eS.

Thus I f  (x) I ^  (1 /|| [J. II) j  d  I [x I =  I which implies th a t 1 /|| (jl || 9R° C { / } °  and
s

completes the proof.

2. Principal Extensions

For any  subset O of the complex plane, we recall th a t the principal 
extension of D in X , M (Ü , X), consists of those i e X  for which the spec­
trum  of x , a (x), is contained in O. In  complex com m utative B anach 
algebras w ith identity, M (O , X) is open if iQ is open [1, p. 147, Theorem  
1.1]. W e show th a t this is not generally true for complete locally m -convex 
com m utative H ausdorff topological algebras with identity. F irst we consider 
a category of algebras where it is true.

Theorem 5. I f  X is a barreled Q-algebra and JQ is open, then M (D , X) 
is open.

Proof. In  barreled Q -algebras <7 (x) is com pact for any  x  [4, p. 77]. 
Sirice is open, if x  € M (Q , X) so th a t a (x) C Q, then the distance 
d  (cy (pc) , 3Û), from a (x) to the boundary of fi , Sß, m ust be some positive 
num ber a. Noting th a t (as in Theorem  2) 91c° is a neighborhood of o in X, 
choose s such th a t o < z < a, and consider y  € x  f -  s9 R°. To show M (Q , X) 
to be open, we wish to show th a t g (y) C O so th a t a neighborhood of x  lies 
in M (O , X). A  typical element of a (y) is y  (M) where M 6 9ÌI and for 
any such M

I x  (M) —  y  (M) I <  £ <  a =  d  (a (pc) , 3 0 ) <  d  (pc (M) , 3 0 )

from which it follows th a t y  (M) belongs to the open set O, and completes 
the proof.

A  case where O is open but M (O , X) is not is given next.
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Example 1. Consider the com m utative complete locally ^ -c o n v e x  
H ausdorff algebra with iden tity  C (C) of continuous, com plex-valued func­
tions on C with com pact-open topology. Note th a t for any x  eC  (C), 
c (x) =  {x  (t) I / e C } . W e show th a t for any  proper open subset Û of C 
containing o , M (Q , X) is not open.

Since a (o) =  {o } , we note th a t x  =  o e M (O , X). The seminorms 
p n (n =  1 , 2 , • • •), where p n (x) — s u p ^ ^  \x  (t) \ , generate the compact-open 
topology on C (C) so th a t the neighborhoods aVn =  {x  e C (C) | p n (x) <  a} 
(a >  o) form a neighborhood base at o and we show th a t each aVn contains 
some x n whose spectrum  is not in O. To construct x n choose [i € O and 
define x n (t) — o for \t\ <  n , x n (f) =  ( 111 —  n) [x for \t\ >  n. Thus x n e aVn 
while x n (n fi- 1) =  [x € O so x n € M (Q , X) and the exam ple is complete.

W e further note th a t since C (C) is first countable, it is a Fréchet 
algebra— hence barreled. It is not a Q -algebra, however, since it contains 
a m axim al ideal which is not closed: nam ely the m axim al ideal containing 
the ideal I of continuous functions w ith com pact support cannot be closed 
since I is dense in C (C). Thus “ Q -algebra ” cannot be rem oved from the 
hypothesis of Theorem  5.

Definition 2. L et P =  ( / ^ c m  be a saturated system of m ultiplicative 
seminorms which generate the topology on X. A  superalgebra Y D X  is 
said to be P-compatible with X if there exists a saturated system Q — (çf)xeL  
of m ultiplicative seminorms generating the topology on Y such th a t the 
collection (<7^x) of their restrictions to X is P.

For each fi. e M let =  {x  e X | p^ '(x) — 0} and let X^ denote the 
completion of the norm ed algebra X /N^; let rĉ  denote the continuous 
hom om orphism  of X into X^ , x  -> x  +  N^. Now suppose tha t Y is P-com - 
patible with X, let 1SQ =  { y  e Y \ p [Xi (y) =  0} where p^ denotes an extension 
of p lx e P to Y, and let Y^ denote the completion of Y/NQ. It is easy to 
show in th is case th a t the m ap x  +  N^ x  +  N^ embeds the Banach 
algebra X^ isom orphically and isom etrically in Y^, and we shall freely m ake 
this identification in w hat follows.

Definition 3 . W ith P as in the preceding definition, the element i e X  
is said to be a topological divisor of zero if, for some index pt, 7ra x  is a topolo­
gical divisor of zero in the B anach algebra X^. A n element x  € X is a strong 
topological divisor of zero if the m ap y  -> xy  is not a topological isomorphism 
of X into itself.

As indicated in [4], the second condition implies the first, but not 
m uch is known about the converse. Some further facts about topological 
divisors of zero are presented here. In  regard to the first such result, note 
th a t in Banach algebras W, letting U  denote the (open) set of units of W, 
the boundary of U  , 3U , is contained in the set of topological divisors of 
zero. In  algebras X, the situation is not as simple because, letting U  denote 
the units of X , 3U  n  U  is not generally empty.
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Lemma i. (a) I f  x  e U and x  € U , then x  is a topological divisor of zero. 
(b) I f  [JL e g (x) n  d(s (x), then x  —  [ie is a topological divisor of zero.

Proof. For x  6 U , x  € U , choose a net ( ^ ) , e s of points from U  which 
converges to x. Since x  £ U  , x  is not invertible in for some fi. e M ([4]). 
Since, for each s 6 S , x s is invertible in , then x  belongs to the 
boundary  of the set of units of X^ and is therefore a topological divisor of 
zero in X ^ . I t follows th a t x  is a topological divisor of zero in X. The 
proof of (b) is similar.

W ith notation as in Definition 2:

Lemma 2. I f  X is a closed sub algebra ('with identity) of Y, then 
9crx (x) n  crx (x) C doy (x) O <sY (x) .

Proof. By the preceding lemma, if fi, € dax (x) fi crx (x), then x  — [ie 
is a topological divisor of zero in X which implies th a t it is a topological 
divisor of zero in Y as well. Thus there is some m  e L  such th a t izm ( x —  fjte) 
is a topological divisor of zero in Y  m, so th a t fj,ecry (L). If  fi, € 3cry (x), then 
fi, m ust be an interior point of cry (#). Since, clearly, <jy (x) C gx (x ), then fi. 
would be an interior point of crx (x) which is contradictory, so the proof is 
seen to be complete.

Definition 4. W ith notation as in Definition 2, a subset O C C  is 
permanent with respect to X if for any  P-com patible algebra Y , M (Q , Y) n  
n X ; = M ( Q , X ) .

Note th a t it is generally true th a t M (Q , X) C M (Q , Y) n X. M oreover, 
as a simple consequence of Lem m a 2, we have:

Corollary i. I f ‘ X is a Q-algebra, then any simply connected region 
is permanent with respect to X.

Proof. W e need only note th a t in Q -algebras the spectrum  of each 
elem ent is closed, apply Lem m a 2, and use [1, Theorem  2.1].

The following theorem  (originally proved for B anach algebras by 
A ckerm ans [1, p. 147, Theorem  2.1]) is stronger than  Corollary 1.

Theorem 6. In  the notation of Definition 2, i f  Q is simply connected, 
then Q is permanent with respect to X.

Proof. W e need only show th a t M ( Q , Y ) f i X C M ( Q , X )  and to this 
end, je t  x  6 M (Q ,Y)n X. Since cry (x) C Ü and <ry (x) =  UmeL (sY (n x) ([4]),

m m m
then g f i mx) C Q for every m £  L. Since X m C Y m for all m e  M and £2

m
is sim ply connected, then M ( û , Y „ ) n X „  =  M ( X , , ü )  according to [i,
p. 14i;7]• Thus cx (jim x) C. Q, for each m  e M. It follows th a t x  6 M (12 , X)

( "2
and completes the proof.
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3. Spectral Continuity

X has spectral continuity  if for any  e >  o there is a neighborhood V 
of o such th a t for all y  e X, if z  e y  +  V, then cr (z) C a (y) +  Se (o) and 
g (y) C a (z) +  S£ (o) where SE (o) =  { fi, e C | \[l\ <  s }.

Theorem 7. Barreled Q-algebras have spectral continuity.

Proof. Letting X x denote the completion of (X) in the B anach algebra 
C (9R), we have for any  x  € X the fact th a t

CO CTx (*) =  ^ o e )  C*) =  %<X) (*) =  oXi ( x )  .

Since X x is a B anach algebra, then for any  x  e X =  (X) and any s >  o,
there is a neighborhood V 8 of o in X x such th a t for any / e i  +  V 8

0 )  ®xt ( / )  C (Æ) +  SB (°) and oXi ( x )  C oXi ( / )  +  S8 (o)

by [5> P* 3b, Theorem  1.6.17] .  Since X is barreled, ^ is continuous by 
Theorem  1 so (Ve) =  V 8 is a neighborhood of o in X. Now for any 
y  e x  +  V 8, using (1) and (2) together,

°x O') =  oXl (50 C ffXi ( x )  +  s . (o) =  <TX ( x )  +  S8 (o)

and  sim ilarly

ax (x) =  crXi (x) C <JXi (5-) +  se (o) =  <TX (y) +  se (o)

which completes the proof.
I t  is easy to verify th a t the Fréchet algebra C (R), where R  denotes 

the reals, fails to have spectral continuity.
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