ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MARIA L. FORNASINI, FRANCO MERLO

Composti di formula M_5Sn_4 e $M_{11}Sn_{10}$ formati dalle terre rare con lo stagno

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **50** (1971), n.2, p. 186–196. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_50_2_186_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Chimica.** — Composti di formula $M_5Sn_4 e M_{11}Sn_{10}$ formati dalle terre rare con lo stagno ^(*). Nota di MARIA L. FORNASINI e FRANCO MERLO, presentata ^(**) dal Socio G. B. BONINO.

SUMMARY. — The crystal structures of phases formed by the rare-earth metals with tin near the equiatomic composition were examined by micrographical and X-ray powder method. Sixteen new compounds with the M_5Sn_4 and $M_{11}Sn_{10}$ stoichiometric formulas were found.

The M_5Sn_4 phases (M = La, Ce, Pr, Nd, Sm, Gd, Tb and Dy) crystallize in the orthorhombic Sm_5Ge_4 structure type; the $M_{11}Sn_{10}$ phases (M = Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm) crystallize in the body-centered tetragonal $Ho_{11}Ge_{10}$ type. Lattice constants of all these compounds and intensity data for La_5Sn_4 and $Dy_{11}Sn_{10}$ are given. The geometrical relationships among Cr_5B_3 , Sm_5Ge_4 and Zr_5Si_4 structure types are shown.

In questo lavoro si è proseguito l'esame delle fasi intermedie formate dalle terre rare con gli elementi del IV gruppo A intorno alla composizione equiatomica. Dopo lo studio dei composti di formula 5:4 formati dalle terre rare con il piombo [1], si è esaminato il comportamento delle terre rare trivalenti con lo stagno.

Pochissimi sono i dati forniti dalla letteratura su questo argomento. Nei tre diagrammi di stato La–Sn, Ce–Sn, Pr–Sn [2], tra loro simili, erano stati identificati i composti M₂Sn, M₂Sn₃ e MSn₃, mentre nessuna fase intermedia era riportata vicino alla composizione I : I. In seguito è stata accertata l'esistenza di composti con formula M₅Sn₃ per tutte le terre rare trivalenti con struttura tipo Mn₅Si₃ [3]. Nel 1968 Schmidt e McMasters pubblicarono il diagramma Y–Sn [4], nel quale, oltre alle fasi Y₅Sn₃, YSn₂ e YSn₃, sono presenti due fasi molto vicine al rapporto equiatomico, e precisamente Y₅Sn₄ (44,4 % in atomi di Sn) isomorfo con Sm₅Ge₄ [5], e Y₁₁Sn₁₀ (47,6 % in at. di Sn) isomorfo con Ho₁₁Ge₁₀ [6].

Era prevedibile che anche i lantanidi, data la somiglianza di comportamento con l'ittrio, più volte riscontrata, formassero fasi analoghe, e a tale scopo si sono preparate leghe di composizione M_5Sn_4 (con M = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er) e $M_{11}Sn_{10}$ (con M = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm).

I metalli delle terre rare usati erano della Lunex Corp. e della Michigan Corp., U.S.A. con purezze superiori al 99,6 %; lo stagno era un prodotto dei Laboratori Koch-Light, Inghilterra, al 99,999 %.

Tutti i campioni venivano preparati per fusione diretta sotto argon di quantità stechiometriche dei due metalli, chiusi in contenitori di tantalio, seguita da una rapida tempera. Poichè le perdite in peso erano trascurabili non è stata fatta alcuna analisi chimica.

(*) Lavoro eseguito nell'Istituto di Chimica Fisica dell'Università di Genova, con l'aiuto finanziario del C.N.R.

(**) Nella seduta del 20 febbraio 1971.

Le leghe dopo la fusione apparivano lucenti, molto fragili, con cristalli laminari alla superficie, estremamente ossidabili. I campioni, dopo essere stati esaminati micrograficamente, sono stati analizzati ai raggi X con il metodo delle polveri, usando camere da 114,6 mm di diametro e le radiazioni K_{α} del rame, ferro e cromo; per ottenere valori corretti delle distanze interplanari, si sono mescolate le polveri in esame con KI (a = 7,0655 Å) come sostanza di riferimento.

Composti M₅Sn₄.

Per questa serie di composti si è incontrata una crescente difficoltà di preparazione passando dalle terre rare più leggere alle più pesanti. All'esame microscopico, mentre i campioni di La, Ce, Pr, Nd e Sm preparati per fusione apparivano omogenei con cristalli di forma allungata, quelli di Gd, Tb e Dy contenevano piccole quantità di altre fasi. Ciò sembra provare che questi composti hanno un punto di fusione incongruente, legato ad una configurazione del diagramma di stato simile a quella trovata per il sistema Y–Sn [4].

Composto	TIPO DI STRUTTURA	a	Ь	С
La_5Sn_4	Sm₅Ge₄	8,448	16,26	8,604
Ce_5Sn_4	$\rm Sm_5Ge_4$	8,337	16,05	8,480
Pr_5Sn_4	$\rm Sm_5Ge_4$	8,270	15,94	8,429
Nd_5Sn_4 ,	Sm_5Ge_4	8,222	15,84	8,376
Sm_5Sn_4	$\mathrm{Sm}_5\mathrm{Ge}_4$. 8,126	15,67	8,290
Gd_5Sn_4	$\mathrm{Sm}_5\mathrm{Ge}_4$	8,046	15,53	8,192
Tb_5Sn_4	$\mathrm{Sm}_5\mathrm{Ge}_4$	8,010	15,41	8,141
Dy_5Sn_4	$\mathrm{Sm}_5\mathrm{Ge}_4$	7,966	15,38	8,105
$Nd_{11}Sn_{10}$	Ho11Ge10	11,87		17,59
$Sm_{11}Sn_{10}$	Ho11Ge10	11,76	<u> </u>	17,32
$Gd_{11}Sn_{10}$	Ho11Ge10	11,67		17,15
$Tb_{11}Sn_{10}$	Ho11Ge10	11,60		17,00
$Dy_{11}Sn_{10}$	H011Ge10	11,54	_	16,90
$Ho_{11}Sn_{10}$	Ho11Ge10	11,52		16,80
$\mathrm{Er}_{11}\mathrm{Sn}_{10}$	Ho11Ge10	11,44		16,74
$Tm_{11}Sn_{10}$	Ho ₁₁ Ge ₁₀	II,42		16,68

TABELLA I.

Costanti reticolari dei composti M₅Sn₄ e M₁₁Sn₁₀ (in Å).

Il confronto dei fotogrammi delle polveri permetteva di concludere che tutti i composti esaminati M_5Sn_4 dal La al Dy sono isomorfi. L'analogia con i fotogrammi dei corrispondenti composti 5:4 formati dalle terre rare con Si [7], Ge [7] e Pb [1], con struttura tipo Sm_5Ge_4 , rendeva possibile l'assegnazione degli indici sulla base di una cella rombica dello stesso tipo strutturale; i valori delle costanti reticolari sono riportati in Tabella I.

Smith e coll. [5] hanno trovato che Sm₅Ge₄ cristallizza nel gruppo spaziale rombico D_{24}^{16} —Pnma con 4 molecole per cella. Data la complessità di tale struttura che presenta 15 parametri posizionali indipendenti, il calcolo delle intensità è stato eseguito sul composto La₅Sn₄ utilizzando gli stessi parametri di Sm₅Ge₄: il buon accordo fra intensità calcolate e osservate (come si può vedere in Tabella II) conferma l'appartenenza delle fasi esaminate al tipo di struttura Sm₅Ge₄.

Ripetuti tentativi di preparazione del composto Er_5Sn_4 , sia per fusione e tempera che per fusione e ricottura a diverse temperature, non hanno permesso di ottenere una fase omogenea. Sui fotogrammi delle polveri di tutti i campioni preparati, oltre alle riflessioni della fase 5:4, comparivano quelle delle fasi vicine 5:3 e II: IO, rendendo così impossibile l'assegnazione sicura degli indici.

TABELLA	II.

I _{calc}
117
020
949
381
267
89
411
356
275
47
27
161
604
405
638
362
360

Intensità calcolate e osservate per La_5Sn_4 (K_aCu). (Le riflessioni non osservate con $I_{calc} < 46$ sono omesse).

TABELLA II (continua).

h k l	sen² $\vartheta_{\rm oss}$	$sen^2 \vartheta_{calc}$	I _{oss}	I _{calc}
250	0,0900	0,0895	d	126
I 5 2	0,0974	0,0966	d	143
203		0,1056		(47
302	0,1070	0,1071	d sf.	131
I 7 I	0,1264	0,1265	md	238
153		0,1367		(304
104	0,1369	0,1367	m	67
024)		0,1374		46
114)		0,1390		(183
351)	0,1393	0,1392	111-	254
4 O I		0,1413	· · · · · · · · · · · · · · · · · · ·	63
420		0,1422		53
4 I I	0.1400	0,1435		186
080	0,1432	0,1438	m	184
I 2 4		0,1458		(75
262	0,1464	0,1463	md sf	165
3 0 3		0,1472		114
I 7 2	· · · · ·	0,1506		95
I 3 4	0,1571	0,1570	m ⁻	253
4 3 I		0,1615		250
163	0,1618	0,1615	m	83
204)		0,1618		124
3 5 2		0,1633		(52
361	0,1638	0,1639	md	192
214)		0,1640		68
402		0,1654		52
4 1 2	0 1671	0,1676	4	84
3 3 3	0,10/1	0,1676	u	108
3 4 3	0,1835	0,1832	m	344
263		0,1865	·	53

14. — RENDICONTI 1971, Vol. L, fasc. 2.

h k l	sen² ϑ_{oss}	$sen^2 \vartheta_{calc}$	I _{oss}	I _{calc}
09I 173	0,1907	0,1901 0,1907	md	52 162
37 I		0,1931		47
244	0,1984	0,1977	d d) 24
191)		0,1984		32
3 5 3	0,2037	0,2034	d	211
I I 5		0,2113		92
273	0 2155	0,2157	đ) ¹¹⁷
501)	0,2155	0,2162	u	58
372		0,2172		75
4 5 2	0,2217	0,2215	dd	121
I 9 2		0,2225		87
2 9 I	×	0,2234		75
38 I		0,2268		72
363)	0.2200	0,2281	đ	102
135)	0,2290	0,2293	ŭ	94
2 0 5	<u> </u>	0,2340		63
3 4 4		0,2394	·	47
264		0,2427		(53
2 2 5	0,2432	0,2430	d	81
470)	- -	0,2434		114
I 4 5		0,2450		78
I74	0,2466	0,2469	m	338
292		0,2475		66
522		0,2493		93
382		0,2509		90
47I)		0,2514		(344
541)	0,2520	0,2522	<i>J</i> ⁻	470
0.10.2		0,2569		286
373	0,2570	0,2573	mf	269

190

Composti M₁₁Sn₁₀.

Anche i composti $M_{11}Sn_{10}$ si formano per reazione peritettica. Nei campioni preparati per fusione su questa composizione, l'esame metallografico e con raggi X mostrava la presenza di più fasi, per cui si rendeva necessario un successivo trattamento termico. I risultati migliori si sono ottenuti preparando leghe leggermente più ricche in stagno e ricuocendole da 20 a 30 giorni a temperature comprese fra 600 e 900°C.

Con questo procedimento la maggior parte dei campioni forniva una fase quasi omogenea. In alcuni casi tuttavia, rimaneva un'altra fase in quantità variabile dal 10 al 20 %, e sui fotogrammi delle polveri si riscontravano poche deboli riflessioni attribuibili al corrispondente composto M₅Sn₄.

I fotogrammi delle polveri dei composti $M_{11}Sn_{10}$ con M = Nd, Sm, Gd, Tb, Dy, Ho, Er e Tm risultavano simili tra loro e ad essi si potevano assegnare gli indici sulla base di una cella tetragonale a corpo centrato simile a quella di Ho₁₁Ge₁₀ [6]. Le costanti reticolari per questa serie di composti sono riportate nella Tabella I. Il calcolo delle intensità è stato eseguito per Dy₁₁Sn₁₀ utilizzando i dati cristallografici del composto Ho₁₁Ge₁₀, gruppo spaziale D_{4k}^{17} —I4/mmm, con 4 molecole per cella, la cui analisi strutturale è stata effettuata da Smith e coll. [6]. In Tabella III si può vedere il buon accordo tra valori calcolati e osservati.

TABELLA III.

Intensità calcolate e osservate per $Dy_{11}Sn_{10}$ (K_aFe). (Le riflessioni non osservate con $I_{calc} < 25$ sono omesse).

h k l	$sen^2 \vartheta_{oss}$	$sen^2 \vartheta_{calc}$	I _{oss}	I _{calc}
400	0,1133	0,1128	m	321
215)	9	0,1174	C.	705
006)	0,1178	0,1183	J a a	133
3 2 3	0,1213	0,1212	f	815
3 1 4	0.1006	0,1231	f	394
4 1 1)	0,1236	0,1232	mf	46
402	0.1068	0,1260	a	445
330)	0,1268	0,1269	J.	555
116	0,1321	0,1324	md	97
332		0,1401		183
4 2 0	0,1402	0,1410	112	17

h k l	sen² $\vartheta_{\rm oss}$	$sen^2 \vartheta_{calc}$	I _{oss}	I _{calc}
3 0 5	0,1460	0,1456 0,1465	f-	483 116
4 I 3	0,1495	0,1494	dd	53
422		0,1542		33
4 0 4	0,1650	0,1654	d^+	128
325)		0,1738	7.7	57
226	0,1740	0,1747	aa	23
334)		0,1795		(31
501	0,1796	0,1796	d	77
431)	7	0,1796		4
316	0,1891	0,1888	dd	26
2 1 7		0,1963	7.7	28
5 1 2	0,1950	0,1965	aa	17
4 I 5	0,2027	0,2020	dd	26
5 0 3		0,2059		262
4 3 3	0,2001	0,2059	mj	96
440	0,2257	0,2256	md	157
523		0,2341		35
208	0.0089	0,2385		89
442)	0,2300	0,2388	m	168
336	0,2451	0,2452	a	90
3 2 7		0,2527		(97
532	0,2539	0,2528	mf	60
600)		0,2538		285
505)	0.2576	0,2584	1	57
435)	0,2576	0,2584	u	105
2 2 8	0.2670	0,2667	d	ý 45
602)	0,20/0	0,2670	u	52
3 1 8 (0.2810	0,2808	dd	10
4 1 7 \$	0,2810	0,2809	uu	57

-

[37] M. L. FORNASINI e F. MERLO, Composti di formula M₅Sn₄ e M₁₀Sn₁₁, ecc.

TABELLA	III	(continua).
---------	-----	-------------

h k l	sen² ϑ_{oss}	$\operatorname{sen}^2 \vartheta_{\operatorname{calc}}$	I _{oss}	I _{calc}
5 2 5	0,2872	0,2866	m	258
613	0,2908	0,2905	md	177
534		0,2923		58
219	0	0,3014		(79
516	0,3018	0,3016	m	145
5 4 3	·	0,3187		72
631	0,3211	0,3206	m	301
4 0 8	0,3236	0,3231	m	204
0.0.10	A A A A A A A A A A	0,3286		241
309)	0,3291	0,3296	m	74
624		0,3346		70
3 3 8		0,3372		82
5 0 7 }	0,3370	0,3373	md	51
437)		0,3373		47
615)	0.2422	0,3430	4	14
446)	0,3432	0,3439	u	
633	0,3465	0,3469	d	100
7 10	0.2525	0,3526	dd	II
550)	0,3335	0,3526	uu	34
329	0 3577	0,3578	000	249
536)	0,3377	0,3580		3
640	0,3664	0,3667	dd	63
5 4 5	0,3713	0,3712	m	238
7 ° 3	0,3749	0,3751	d	109
2.2.10	0.3852	0,3850	111	J 157
419)		0,3860	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	69
5 1 8	0,3930	0,3936	dd	61
626	0,3997	0,4003	md	190
7 2 3	0,4029	0,4033	<i>d</i> +	130
	I	1	1	

L'aspetto micrografico delle corrispondenti leghe di Ce e Pr indica la presenza di una fase sulla composizione 11:10 o comunque molto vicina a questa. I fotogrammi delle polveri erano molto simili tra loro, ma alle riflessioni non potevano attribuirsi indici in accordo col tipo di struttura Ho₁₁Ge₁₀.

DISCUSSIONE

Come notato da Iandelli per numerose serie di composti intermetallici isostrutturali delle terre rare [8, 9, 10], anche per le due serie di composti studiati M_5Sn_4 e $M_{11}Sn_{10}$ le costanti reticolari variano linearmente con il raggio ionico trivalente delle terre rare. In fig. I è riportata in funzione del raggio r_M^{3+} della terra rara la radice cubica del volume per formula unitaria (R), ottenuta dividendo il volume della cella elementare per il numero di molecole in essa contenute.

Fig. 1. – Radice cubica del volume per formula unitaria (R) dei composti M_5Sn_4 e $M_{11}Sn_{10}$ in funzione del raggio ionico trivalente delle terre rare.

Con i dati disponibili [7, 11, 12, 13, 14, 1] è possibile fare un quadro quasi completo del campo di esistenza della fase 5:4 formata dalle terre rare con gli elementi del IV gruppo A (fig. 2).

I tipi di struttura per questi composti sono essenzialmente due: il tipo rombico Sm₅Ge₄, molto frequente, e il tipo tetragonale Zr₅Si₄ [15], che sembra esistere solo per un rapporto dimensionale $r_{\rm M}/r_{\rm X} > 1,36$ (usando i raggi metallici di Goldschmidt per la coordinazione 12). La struttura di Lu₅Si₄ è una distorsione monoclina di quella di Sm₅Ge₄ [7]; il composto Lu₅Pb₄, la cui struttura non è stata ancora completamente determinata [14], non appartiene ad alcuno dei tipi strutturali citati. La variazione lineare delle costanti reticolari con il raggio ionico trivalente delle terre rare già osservata per i composti M₅Sn₄ e M₅Pb₄, è soddisfatta anche per i composti M₅Si₄ e M₅Ge₄.

195

Fig. 2. - Composti M5X4 delle terre rare con gli elementi del IV gruppo A.

Il tipo Sm_5Ge_4 rientra nella famiglia strutturale che ha per capostipiti i composti CuAl₂ e U₃Si₂, come già notato da Smith e coll. [5]. Se si considerano inoltre le strutture di Cr₅B₃, Sm_5Ge_4 e Zr₅Si₄ si può osservare che esistono evidenti analogie geometriche tra queste strutture, dovute al fatto che sono formate da una stessa unità di ripetizione. Tale unità è costituita da un solido assimilabile ad un cubo avente atomi di specie M ai vertici e al centro, e da un ottaedro avente atomi di specie X ai vertici, con il centro coincidente con quello del cubo (fig. 3). La distorsione di tali cubo-ottaedri dalla figura

Fig. 3. – Unità di ripetizione delle strutture tipo Cr_5B_3 , Sm_5Ge_4 e Zr_5Si_4 .

geometrica ideale aumenta nella sequenza: Cr_5B_3 , Sm_5Ge_4 , Zr_5Si_4 . Ciò che caratterizza i tre tipi di struttura è la diversa concatenazione di queste unità di ripetizione, come è mostrato schematicamente in fig. 4. Per maggiore chiarezza non sono disegnati gli interi cubo-ottaedri, ma solo gli spigoli dei cubi, tralasciando le posizioni degli atomi M nei centri dei cubi e quelle degli atomi X ai vertici degli ottaedri. La fig. 4 (*a*) si riferisce ad entrambe le strutture di Cr_5B_3 e Sm_5Ge_4 , tenendo conto della diversa orientazione degli assi cristallografici. In queste due strutture i cubo-ottaedri formano strati nei piani xy e xz, rispettivamente. L'altezza *c* della cella tetragonale del Cr_5B_3 è determinata dalla sequenza di due strati di questo tipo, ruotati l'uno rispetto all'altro di 180° nel piano yz (o xz).

Nel Sm₅Ge₄ si ha una sequenza analoga lungo l'asse y, ma con lo strato successivo ruotato rispetto al primo di 180º nel piano xz.

La differenza nella formula stechiometrica risiede nel fatto che, mentre nel Cr_5B_3 ognuno dei sei atomi X dell'ottaedro emergenti dalle facce di ciascun

Fig. 4. – Concatenazione schematica delle unità di ripetizione nelle strutture tipo Cr_5B_3 , $Sm_5Ge_4 \in Zr_5Si_4$.

cubo è in comune a due cubi, nel Sm₅Ge₄ i due atomi X che sporgono dagli strati lungo l'asse y appartengono ad un solo cubo.

Nel Cr_5B_3 e nel Sm_5Ge_4 ogni cubo ha in comune con quattro cubi altrettanti spigoli paralleli, originando in tal modo degli strati; nello Zr_5Si_4 ogni cubo è legato con altri quattro in modo da formare un'impalcatura che si estende nelle tre dimensioni (fig. 4 (b)).

Gli autori ringraziano il prof. A. Iandelli per gli utili suggerimenti avuti durante lo svolgimento del presente lavoro.

BIBLIOGRAFIA

- [1] F. MERLO e M. L. FORNASINI, «Rend. Accad. Naz. Lincei», 46, 265 (1969).
- [2] M. HANSEN e K. ANDERKO, «Constitution of binary alloys », McGraw-Hill Book Company, Inc. (1968).
- [3] A. PALENZONA e F. MERLO, « Rend. Accad. Naz. Lincei », 40, 617 (1966).
- [4] F. A. SCHMIDT e O. D. MCMASTERS, « J. Less-Common Metals », 15, 1 (1968).
- [5] G. S. SMITH, Q. JOHNSON e A. G. THARP, «Acta Crystall. », 22, 269 (1967).
- [6] G. S. SMITH, Q. JOHNSON e A. G. THARP, «Acta Crystall. », 23, 640 (1967).
- [7] G. S. SMITH, A. G. THARP e Q. JOHNSON, «Acta Crystall. », 22, 940 (1967).
- [8] A. IANDELLI, « Rend. Accad. Naz. Lincei », 37, 160 (1964).
- [9] A. IANDELLI e A. PALENZONA, « J. Less-Common Metals », 9, 1 (1965).
- [10] A. IANDELLI e A. PALENZONA, « J. Less-Common Metals », 15, 273 (1968).
- [11] O. N. CARLSON, F. A. SCHMIDT e D. E. DIESBURG, «ASM Trans. Quart. », 60, 119 (1967).
- [12] O. D. MCMASTERS, T. J. O' KEEFE e K. A. GSCHNEIDNER Jr., «Trans. Met. Soc. AIME », 242, 936 (1968).
- [13] J. T. DEMEL e K. A. GSCHNEIDNER Jr., « J. Nucl. Mater. », 29, 111 (1969).
- [14] O. D. MCMASTERS e K. A. GSCHNEIDNER Jr., «J. Less-Common Metals », 19, 337 (1969).
- [15] H. U. PFEIFER e K. SCHUBERT, «Z. Metallkde, », 57, 884 (1966).