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Topologia. —■ On polynomial mappings in linear spaces Nota 
di E l is h a  N e t a n y a h u  e M e ir  R e ic h a w , presentata0  dal Socio 
B . S e g r e .

RIASSUNTO. — Un’applicazione continua fra due spazi topologici uniformi è detta 
polinomiale, quando essa muti ogni successione generalizzata del primo spazio che sia 
priva di sottosuccessioni di Cauchy in una successione generalizzata del secondo spazio 
godente della stessa proprietà. Nel presente lavoro vengono assegnate condizioni sufficienti 
affinché un’applicazione continua risulti polinomiale, deducendone teoremi sull’ iniettività 
di un’applicazione continua e varie applicazioni, fra cui un teorema di esistenza, unicità 
e dipendenza continua dai valori al contorno per un’equazione di Volterra di 2a specie ed 
una generalizzazione del teorema fondamentale dell’algebra.

i. Introduction

The fundamental theorem of algebra can be expressed by saying that

(1) a polynomial f  =$= const, maps the complex plane X onto itself.

The following two properties are essential for (1) to hold:

(2) If f ( x Q) =  y 0 then the image / ( X )  of the plane X covers some open 
(in X) neighborhood of y 0 (we say that /  is open at (or in) y 0) and

(3) /(# )-->  00 as x  co.

Property (2) implies that the im a g e /(X ) of X is an open subset of the 
plane X ançl property (3) (which, as known, characterizes polynomials in 
the cläss of all entire functions) implies that / ( X )  is closed in X (see for 
example [16], p. 1399). Since the plane X is connected it follows that 

/ ( X )  =  X -Because of the importance of (1) it is quite natural to generalize proper­
ties (2) and (3) to more general mappings and spaces than a polynomial 
and a plane. It is trivial that property (2) can be formulated without changes 
for mappings / :  X -> X of general topological spaces. Some results im ply­
ing this property have been obtained i.a. in ([5], [6]) and [15]—[18]. An 
interesting theorem in this direction was recently obtained in [12]. Property (3) 
was generalized to the so-called polynomial mappings which play an import- (*) (**)

(*) The research of the first author was partly supported by the U.S. Air Force under 
grant AF-AFOSR 68-1472 monitored by the Office of Scientific Research.

(**) Nella seduta del 20 febbraio 1971.



1 4 0 - CIO°]Lincei -  Rend. Sc. fis. mat. e nat. -  Vol. L -  febbraio 1971

ant role in finding conditions under which a mapping / : X - > Y  maps X 
onto Y (see for example [15] and [16]).

In section 3 of this paper the notion of a polynomial mapping is defined 
and some mappings /  : X -> Y of a linear space X into a linear space Y are 
shown to be polynomial mappings.

Section 4 contains a theorem generalizing a result obtained in [16]. 
It is applied to find i.a. conditions under which for a mapping / :  X -> Y 
the image /  (K) of a closed subset K of X is closed in Y. A simple theorem 
on homeomorphism of Banach spaces containing as a trivial consequence 
an existence theorem for the (not necessarily linear) Volterra equation of 
the second kind is proved. In Section 5 conditions are given under which 
for /  : X -> X the image /  (X) of X is dense in X and a fixed point theorem 
generalizing several recently obtained results about the contraction m ap­
ping principle is stated and applied i.a. to an implicit function theorem. 
Some theorems on “ mappings onto ” (surjective mappings) are also proved. 
As an application a generalization of the fundamental theorem of algebra 
is obtained. A rem ark concerning equations with quaternion coefficients is 
also given and two problems are posed.

2. N otation  and  d e fin it io n s

W e denote by P (P ') the set of pseudometrics p  (pr) generating the 
uniform ity of X (of Y), {x G} =  { i ö}öe2  denotes a net (a generalized 
sequence) in X, i.e. {^ojc-es is a function m apping ä directed set S  into X 
and {x a.'} C { x G} m eans th a t {xG>} is a subnet of {x G} . If  X is a uniform  
space then the set of all Cauchy (fundam ental) nets in X is denoted by  C (X) 
and the set of all nets {x G} in X which do not contain a Cauchy subnet {x G>} 
is denoted b y .C '-(X ). T he word “ m apping ” denotes a “ continuous m ap­
p in g ” , “ i f f ” stands for “ if and only if ” and “ =  > ” stands for “ implies ” . 
A  subset K  C X of a pseudom etric space X with pseudom etric p  is called 
^ -b o u n d ed  iff there exists x 0 € X such th a t sup p  (.x0 , x) <  00.

x e K

Evidently  the fact th a t K is j>-bounded does not depend on x 0 (since 
if sup p  (xq , x) < 00 then for each y Q 6 X also sup p  (y0 , x) <  00). Given

x Q K  a;6 K
a set P of pseudom etrics in X a subset K  C X is called P -bounded  iff K  is 
»̂—bounded for every 7)6 P. A  net {xG} in X is called alm ost ^ —bounded 
(ö^-bounded) iff there exists g0 € S  such th a t the set {xa ; x G e {x G} and 
cr >  cj0} is ^ -b o u n d ed  and a net { x G} is ^P -bounded  iff {x G} is ^/»-bounded 
for every p  € P.

In t U  denotes the interior of the set U , || ||—the norm  in a norm ed
space ind  a linear space denotes a linear Hausdorff space. W e note also th a t 
in the case th a t the topology of X is generated by  a single pseudom etric (or 
by a norm ) the topological notions and the notion of completeness m ay be 
expressed, as well known, by  using “ usual ” sequences {x n}n==i }2, . . . .
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3. P olynomial m appings in  l in e a r  spaces

In this section the notion of a polynomial mapping is defined and some 
mappings in linear spaces are shown to be polynomial mappings.

To generalize (3) one notes that if {xn}n̂  1,2, • •• is a sequence of points x n of  
the plane X (and more generally of a finite dimensional Banach space X) then 
x n ->oo iff does not contain a Cauchy (fundamental) subsequence.

Thus (3) can be expressed by saying that { f(xn)}n== 1,2, -■■ E C' (x) pro­
vided that {x n}n=i)2,... € C' (X).

This leads to the following
D e f in i t io n  i. A  mapping / :  X ->  Y of a uniform space X into a uni- 

form  space Y is called a polynomial mapping iff fo r  every net {xG}  in  X 
from  {x a} 6 C '(X) follows that { f  (xa)} eC '(Y ).

An important class of mappings used in analysis is the class of mappings 
of the form f  (x) =  x  — F (x) where F : X -> X is a completely continuous 
mapping (not necessarily linear) of a Banach space X into itself. A gene­
ralization of the notion of a completely continuous mapping to uniform 
spaces may be given as follows:

D e f in i t io n  2. A  mapping ¥  : X -> Y of a uniform space X into a 
uniform space Y is called completely continuous iff  fo r  every aP—bounded 
net { x G} in  X there exists a subnet { x G'} C { x G} and a point y  £ Y  such that 
F (xGl) -> y  (P-denotes the set of pseudometrics generating the uniformity of X).

As easily seen a completely continuous mapping F : X -> Y of an infinite 
dimensional Banach space X into a Banach space Y is not a polynomial 
mapping.

(This follows from the fact that a ball in an infinite dimensional Banach 
space is not compact). Also if F  : X X  is completely continuous the 
mapping f  (x) =  x  —  F (x) need not be a polynomial mapping.

In the following Theorems 1 and 2 conditions are given for a mapping 
f  (x) — x  —  ¥  (x) where F : X -> X is completely continuous to be a poly­
nomial mapping.

THEOREM i. Let "A be a complete linear (Hausdorff) space and let X iC  X. 
Let F : Xi X be completely continuous and suppose that f i x )  — x —- F (x) 
satisfies the following condition

(4) I f  {x<?} is a net in  X i which is not aP—bounded then { f  (xGf i  is not 
dp-abounded <1>.

Then f  : Xi X is a polynomial mapping .

Proof. Let {xa} e  C' (Xx) and suppose to the contrary that for some subnet {xG, } C {xa} 
one has { f ( x a,)} G Ç (X). Thus { f { x 0,)} is ^P-bounded and by (4), {xG,} is ^P-bounded. 
Since F is completely continuous there exists a subnet {xG, , } C {xG, } and a point y  g X with 
P ( XG")~~*y an  ̂ by { / ( v ) ) e C (X) and the completeness of X it follows that there 
exists x  g X such that f  (xa,,) ~^x.  Hence x G,, x  y  contradicting {x G} G C' (Xj).

(1) P is the set of pseudometrics generating the uniformity of the linear space X.
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COROLLARY i . I f  F : X -> X is a linear completely continuous mapping
of a Banach space X into itself and i f  x  — F (x) =  o implies x  =  o then

f  (x) =  x  — F (pc) is a polynomial mapping.
Proof. As easily seen there exists a constant m  >  o such that \ x  — F (x)|| > m \ x \ .  

It remains to apply Theorem 1.

THEOREM 2. Suppose that the pseudometrics p  of the set P generating 
the u n if ormity of the linear space X satisfy

(5 )  PO* , y ) =  P ( x — y , o )

and let F : Xi -> X be a completely continuous mapping of a subset Xi 0/ X 
into X such that

(6) F (Xi) is P-bounded.

Then f  (x) =  x  — F (x) is a polynomial mapping.

Proof. Let {xG} e C' (X1) and suppose to the contrary that for some subnet {x  , } C {xa}
one has { / ( ^ 0,) } e  C (X). Then [ f { x G,)} is ^P-bounded. Hence by (5) and (6), {xG,} is
tfP-bounded. Since F is completely continuous there exists y  e X such that F (xG,,) ->y  
for some subnet {xG, , } c {xG, } . It follows by { f ( x G,)} € C (X). and by (5) that {xG, , } € C (X2) 
contradicting {xG} e  C' (Xx) .

4. T h e  m a in  p r o p e r ty  o f  p o ly n o m ia l m appings

This section contains i.a. two theorems. The first one (Theorem 3) 
generalizes a result obtained in [16]. The proof of it is a slight change of 
that of Lemma 1 in [16], p. 1399 and the theorem itself gives the main 
property of polynomial mappings. The second one (Theorem 4) has as a 
trivial consequence an existence theorem for the (not necessarily linear) Vol­
terra equation of the second kind. Several other applications of Theorem 3 
are also given.

T h eo rem  3. I f  f  : X Y is a polynomial mapping of a complete uniform  
space X into a Hausdorff uniform space Y then fo r  each closed subset K <9/ X 
the sët f  (K) is closed in  Y. (In  particular f  (X) is closed in  Y).

Proof. Let { y G} be a net such that y G e / ( K )  and y G ~+y. Let x G be points of K 
with y G —f  (x G). If there would be {xG} e  C '(X) then, since f  is a polynomial mapping, also 
{y e  C'(Y) contradicting y G~>y. Hence, for some subnet {xG,} of {x G} one has {xG,} e 
e  C (X). Since X is complete there exists a point x  such that x G, x  and since K is 
closed one has x  e  K. But then y  = f ( x )  e /(K ) .

We give now several applications.

A p p l ic a t io n  i . Let F : X - > X  be a completely continuous mapping 
of a complete linear (Hausdorff) space X into itself and suppose that

00
X =  U  X^ where X w are closed in X and P-bounded. Let f  (x) =  x  — F (x).

n = 1
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Then /  (X) is an F0-set in X. In particular in case that X is a complete 
linear metric space, F (X) is an F c-set in X.

Proof. For every n — 1 , 2 ,• • • the mapping f \  X* : X» -> X ( /  restricted to X») 
satisfies the assumptions of Theorem I (with X i replaced by X«). Thus / :  X n X is a poly­
nomial mapping. By Theorem 3 the sets / ( X w) are closed.

Easy examples show that under assumptions made in the above application / ( X )  
need not be closed.

A p p l ic a t io n  2. If F :  X i - > X  is a completely continuous mapping 
of a closed subset Xi of a Banach space X into X such that F (Xi) is bound­
ed, then for f  (x) = x  — F (x) the s e t / ( X i)  is closed in X. In particular 
(as well known) if the closure F (Xi) is compact, then /  (Xi) is closed.

Proof. Follows from Theorems 2 and 3.
The reasoning in Application 3 is a generalization of that used in the theory of partial 

differential equations in case f  =  D is a differential operator (see for instance [11], p. 57).

A p p l i c a t i o n  3. Let X and Y be two complete metric spaces with the 
metrics p and p' respectively. Let G C X X Y be a closed subset of X X Y 
with the metric d  {{xx , y f)  , (x2 , yfj)  =  p (#1 , x 2} +  p' ( f i  , y  2])• Suppose that 
G is a graph of a function /  : X i -> Y (not necessarily continuous), where 
Xi C X and define a “ new ” metric on Xi by d (x1 , x 2) — P (x i > *2) +  
+  Pr ( f  (x i) > f  (x 2))- Then Xi with the metric d is a complete space.

Proof. We note first that by Theorem 3, if g  : Z W is a mapping of a complete 
uniform space Z into a uniform Hausdorff space W with uniformities generated by P and 
P' respectively such that for each p  e  P, there exists p ' e  P' and a constant a =  a (p , p') >  o 
satisfying p ' (g (xf) , g  (x2)) > v.p (x1 , x 2) for all x ± , x 2 of Z, then g  (Z) is closed in W. 
Now, the projection II : G ■-> X is an isometry on G and since G is closed in X X Y and 
X X Y is complete, one gets by putting g  — II , Z =  G and W =  X that tz (G) =  X i is 
closed in X. Thus Xi with the metric d  is a complete space.

Before the next application we introduce (see [1] or [7]) the notion of 
asym ptotically equal m appings.

DEFINITION 3. A  mapping  /  : X Y of a Banach space X into a Banach 
space Y  is said to be asymptotically equal to a mapping g  : X -> Y i ff

\ f ( x )~ -g {x ) \ \
II r. II for \\x II 00 .

A p p l ic a t io n  4. If  /  : X -> Y is a m apping of a finite  dim ensional 
Banach space X into a B anach Y which is asym ptotically equal to a linear
m apping g  : %. -> Y such th a t in f \\g (x) || >  o, then / ( K )  is closed in Y,

11*11=1
for every closed subset K  C X.

Proof. By Theorem 3 it suffices to show that / : X - > Y  is a polynomial mapping. 
Thus let {.*„} e |C '(X) and suppose to the contrary that f ( x 'n) ->y0 € Y for some subse­

quence {x 'J  of . Then by \xf{

xi

00 and / « ) — g&„) - o it follows that

= g - o as n - 00 contradicting inf || g  (x) | >  o .
Il*ll=i
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Before proving Theorem 4 we introduce a property T  which was stated 
in [16], p. 1401 for the case of generalized F-spaces.

P r o p e r t y  T. Let /  : X -> X be a mapping of a linear normed space X 
into itself such that for the point y 0 e /( X )  there exists a point x 0 € f~ 1(y0), 
a ball (a spherical region) B (x 0 ,r),  a complex function X =  X (x0) =j= o and 
a real function a — a (x0) : o <  a <  1 such that for every two points x  and y  
belonging to B (.x0 , r) one has

\ \x— y  —  \ ( x ü) ( f ( x ) — f ( y ) ) \ \ < a . \ \ x — y\\ for * =j=y.

Then /  : X ^ X  is said to have property T at (or in) the point y o C /(X ).
The following result was in fact proved in Lemmas 4 and 3 of [16] (see 

also Theorem 3 of [5], p. 192).

(7) If / : X - > X  has property T at the point f ( x Q) =  y 0 then

/  [B (x0 , r)] contains a sphere B (y0 , r0) with radius r0 =  -— -p r . (E v id en tly / 
is one to one on B (x0 ,r )  and as easily seen /  is a local homeomorphism).

Remark i . Let us note that Theorem 1.11 in [10], p. 12 is a simple consequence of (7).

THEOREM 4. I f  F : X -> X is a mapping of a Banach space X into 
itself such that fo r  all x  , y  of X : || F (x) — F (y ) || <  y \\x — y  | | , where y <  1 
does not depend on x  , y  then f  : X -> X defined by f  (x) =  x  -— F (x) is a 
homeomorphism of X onto itself.

Proof. One has:

S /W  -—/O ') I =  -  F W +  F (y) I >  1̂  — y  || -  [ F (x) -  F (y)|| >  (i -  y) ||* - y  ||.

Thus /  is a one to one polynomial mapping. By Theorem 3, /  maps closed sets 
(in X) onto closed sets. It remains to show that /  : X X is an open mapping of X onto itself. 
For this purpose it suffices by (7) and the connectedness of X to prove that f :  X -> X has 
property T at every point y 0 e / ( X ) .  But this is quite trivial. Indeed, fix an arbitrary 
X , o <  X <  I and put a =  1 — X +  yX. Then o < a <  I and \ x — y  —  \ ( f ( x ) — f ( y ) ) \ <  
<  a \ x ‘—y  I .

We give an application of Theorem 4.

A p p l ic a t io n  S. Take the Volterra equation of the second kind (not 
necessarily linear)

t

Suppose that K ( t , s , u) is defined for

t0 <  s <  t <*t0 h and —  00 <  u <  00

t '
and that F(x) =  F(x) (t) =  j  K ( t } s y x  (s)) ds is a continuous function of t.
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Suppose also that

I K ( t , s , u) —  K (/ , s , v) I <  L  I u — v\  for ail u  =f= v

— 00 <. u , v < 00 where L i s a  constant which does not depend on u  , v 
(i.e., K ( t , s , u) satisfies the Lipschitz condition with respect to u). Then 
for h w ith o <  A <  —  and y =  LA one has || F  (x) —  F  (y) || <  y \\x — y  | | , 
where F : X - > X  m aps the Banach space X =  C.[/0 , t0 +  A] of all continuous 
real functions x  =  x  (t) , t0 <  t <  t0 h w ith norm  \\x\\ — sup | x  (t) | into

t0<t<t,+k
itself. By Theorem 4, equation (8) has for every y  = y  (t) of X =  C [t0 , t0 -)-A] 
a unique solution x  =  x  (t) 6 X, which depends continuously on y  =  y  (t).

Remark 2. Let us note that a similar result can be stated for the equation
b

x  (t) — X j K ( t  , s  , x  (s)) d s =  y  (t)

with K ( I , s , u) defined for a < s < t <  b , — 00 < u <  00 and | X | sufficiently small.
Let us also note that taking in (8) K ( t , s , ü) =  f  (s , u) and y  it) =  x 0 one obtains 

as known (under the assumptions made in the above Application) the existence, uniqueness 
and continuous dependence on xo of a . solution x  (/) , t0 < t  < h of the equation

t
x  (t) — J f ( s  , x  (s)) ds =  x 0 .

0̂

5. A FIXED POINT THEOREM AND MAPPINGS ONTO

In this section conditions are given under which for /  : X -> X the 
image /  (X) of X is dense in X and a fixed point theorem generalizing some 
recent results about the contraction mapping principle, obtained by a number 
of writers, is stated and applied i.a. to an implicit function theorem. Some 
applications to “ mappings onto ” are obtained. A generalization of the 
fundamental theorem of algebra is proved. A remark concerning equations 
with quaternion coefficients is given and two problems are posed.

The idea of the next lemma is given in [8].

Lemma 1. Let f  : X -> X be a mapping of a metric s p a c e d  with metric p 
into itself and let x 0 € X. Denote f  • • • / ( # 0) =  f s (x0) and suppose that'.

s

(9) for every s >  o there exist I =]= k  such that p ( f k (x0) , f l (;r0)) <  £ 

and

(10) p (x0 , f s(x0)) <  p ( /  (x0) , f s+l (*„)) for s =  I , 2 , • • •.

Denote by R  =  R (x 0) the set { x 0 , f  (x0) , f f  (x0) ,•••}•
Then x 0 e f  (R) (the closure o f / ( R)).
Proof. Take s >  o and let I >  k  satisfy (9). Then by (10) and (9)

P (* 0  . / ( A " “ 1 C *o)»  =  P (* o  . f l~k (* o ))  <  P ( / 4 (* o ) , f  ( ^ 0))  <  e  •
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T h eo rem  5. / f / : X - > X  is a mapping of a complete metric space X
into itself such that (9) holds fo r  every x 0 6 X and i f

(11) p (f ( x ) , / O ) )  >  p (x ,y )  for all x  , y  e X

t h e n f ( X )  =  X.

Proof. By Lemma I, / ( X )  =  X and by (u )  and Theorem 3, / ( X )  is closed in X. 
Thus / ( X )  =  X.

Remark 3. It is easily seen that the assumption of completeness of X in the above 
Theorem cannot be omitted or even replaced by the assumption that X is totally bounded. 
In case that X is totally bounded assumption (9) is trivially satisfied and one obtains that 
a m apping/: X-> X of a metric compact space into itself satisfying (11) maps X onto itself. 
This result was proved by A. Lindenbaum in [8].

We introduce now the following

DEFINITION 4. Let P be a set of pseudometrics ^  X x X .  A  mapping 
f  : X -> X is a (X , P map ping at ■% e X i ff  fo r  each p  G P there exist 
rp =  rp(x) >  o and \ p =  ~kp(x) >  o such that [p ( x , y ) <  rp] =  >  [p( f ( x )  , f { y ) )  <

The function rp — rp (x) will be called the r^-radius and X̂  =  X̂  (x) the 
X^-coefficient. The r^-radius rp =  rp (x) is called X^-bounded at x  iff

r*(f  (xjy “  I# The ^r~coefficient — ^p(x ) is- said to form a convergent
00 n

series at x  (is cs at x) iff L II 'kp ( /  O)) <  °°> where f  (x) =  f f  ■ ■ ■ f  {x)
1J 1 o * Jdenotes the j - th  iterate of f  at the point ^  ( /  (x) =  x). Finally an r^-chain

Cp ( x , x f) joining the points x  and x l is a finite sequence of points
# == x 0 , x± , • • •, — x r y n ~  n ( p , # , x f) such that for every i  — o , 1, • • •, » — 1
one has p  (x£, x i+i) < rp (xt).

T h eo rem  6. Let f  : X X be a (X , Y)-mapping of a complete uniform , 
Hausdorff space X with uniformity generated by the set P of pseudometrics 
having the following properties'.

(a) there exists a point x 0 such that fo r  each p  € P there exists an integer 
I — I ( / )  >  o  and a finite sequence of points x 0 , x 1 , • • •, x n(P) = f ( x 0) fo r  
which the sequence y Q , y 1 , • • •, y n(P) is an rp-chain Cp (y0 yyn), where y { =  f l (x^), 
i  =  o  , I , • • • ,  n\

(b) fo r  every p  6 P the rp—radius rp =  rp (x) is \ p-bounded at each point

% fa )  , i  =  o , I , • • •, n — I , j  =  o , I , • • •,
and

(c) the \ p-coefficient is cs at each point x {, i ' =  o , 1 , • • •, n — 1.

Then the sequence xo , f ( x 0) , f f  (x0)• • • converges to a fixed  point \  = / ( £ ) .

Moreover, if
(a*) for every /  6 P each two points x  and a;' can be joined by an 

r^-chain Cp (x , x')\
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(b') for every p  e P the rp- radius rp =  rp (x) is X^-bounded at each 
point x  e X,

(cf) the X^-coefficient is cs at each point x  G X, then for every x 0 
the sequence: x 0 , f ( x 0) , f f  (x0), • • • converges to a unique fixed point £ = /(! ;) .

Proof. The proof is a standard one.

C o r o l l a r y  2. Let F :  X - > X  be a mapping of a complete linear H aus- 
dorff space X into itself satisfying:

(12) exists x 0 e X, a =  a (ar0) =j= o, 8 =  8 (at0) >  o <2 finite number
of pseudopietrics p i± , • • •, p in (belonging, to the set P of pseudometrics 
generating the uniformity of X) such that (a)-(c) hold fo r  f y (x) — x  — 
— a (#q) (F (x) — y) and every y  with max pi. (F (x0) , y)  <  8.

j = J

Then there exists an open neighborhood U of F(Y0) such that U C F(X).
n

Proof. Take y  e  U =  n  Bp . (F (x0) , 8), where (y0 , r) =  {y  ; p  (y0 , y)  <  r}  (the
j =1

^-ball with center yo and radius r). By Theorem 6 there exists a point 5 =  5 (t) such that 
f y  (5) =  5* Hence by a (̂ ;0) =j= o it follows that F (5) =  y.

The proof of the following simple theorem is similar to that of Theorem 2 in [16], 
p. 1400 and will be omitted.

T h eo rem  7. Let F : X - > Y  be a polynomial mapping of a complete 
uniform space X into a uniform Hausdorff space Y such that In t F  (X) =j= o. 
Let E C  X. be the set of points at which F  is not open (i.e. -F(x) G In t F(X ) 
fo r  i e E )  and suppose that Y \ F ( E )  is connected. Then F(X ) =  Y.

W e give three applications and rem arks.

APPLICATION 6. L et F  : X -> X be a polynom ial m apping of a complete 
linear H ausdorff space X into itself such th a t property (12) of Corollary 2 
holds for every point r e X \ E  where X \ F  (E) is connected and suppose 
th a t (12) holds. T hen  F(X ) =  X.

Proof. By Corollary 2 the assumptions of Theorem 7 hold (with Y replaced by X). 
Thus F(X) =  X.

Remark 4. To see that Application 6 is in fact a generalization of the fundamental 
theorem of algebra it suffices to note that a complex polynomial F : X -> X (here X denotes 
the complex plane) is a polynomial mapping, to use property (12) of Corollary 2 for every

Xq e  X with F((xo), q= o , a (x0) —
F (x) ■ F (y) I

F ' W
S =  8 (xq) such that if x  , y  e  B (x0 , 8) then

v x <  -— and to note that the set E of points x  with F'(^) = 0  
x — y  F'(*0) 2

is finite and thus F (E) does not disconnect the plane X (Compare, Remark 3 in [16], 
p. 1404). This shows the important role played by the dimension of the plane for the 
validity of the fundamental theorem of algebra (A finite set does not disconnect the com­
plex plane (it does disconnect (if ={=0) the real line)).

Remark ‘5. Theorem 7 enables to give also the following proof of the fundamental 
theorem of algebra. Let F : X -> X be a polynomial and X =  Y be the complex plane. 
Then F is a polynomial mapping. Now | F'(^) |2—the Jacobian of F—vanishes in a finite 
set E of points. Thus X \  F (E) is connected and by Theorem 7 we have F (X) =  X.
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This proof of the fundamental theorem of algebra was given in [15], p. 160 and [16], p. 1401. 
The same idea can be, as easily seen, used to prove the existence of solutions for equations 
with quaternion coefficients (The “ fundamental theorem of algebra for quaternions ” was 
proved in [13] and in a more general form in [2]). Let us only illustrate this last statement 
on the polynomial f  =  x 2 +  2 bx +  c, where x  =  x±-\- x 2 i +  x 3j  +  x 4 k, b — b\-f  b2 z +
+  b z j  +  b4 k and c =  cx +  c2 i +  ' +  c4 k are quaternions with X{ , b and C{— real.
Writing /  =  /1  +  f 2 i  +  f  3 j  - \- f4 k  we obtain

fx  — x \  — x 2 — x z — x 4 +  2 b1 x 1 — 'ib^X'i — 2 bz x 3 — 2 b4 x 4 +  cx

f 2 =  2 x i  x 2 +  2 b2 xx +  2 bx x 2 +  2 bz x± — 2 b± x 3 +  c2 ,

f s  —■ 2 xx xs  +  2 bz xx +  2 b/x x 2 +  2 bx x 3 — 2 b2 x 4 +  c2

and
f 4 =  2 xx x 4 -J- 2 b4 Xx — 2 b2 x 2 +  2 b2 x 2 +  2 bx x 4 +  c4 .

For this mapping of the four dimensional Euclidean space E4 into itself the Jacobian equals 
to 16 multiplied by

(■x x +  bx) 2 [(x4 +  bj) 2 +  (x2 -f  b2) 2 +  (x3 +  bs ) 2 +  (x4 +  b4) 2 +  b\ +  b\ +  b4] +

+  [(-̂ 2 +  b2) b2 -f- (x3 +  b3) b3 +  (x& +  b4) b^ •

Comparing this expression to zero we get

%i T" bx =  o and (x2 -f- bs) b2 -J- (x3 -j- bs) b3 +  (x4 +  b4) b4 — o .

Thus in case that one of the numbers bs , bs , b4 is =|= o the set E is a 2-dimensional plane 
in E4 and / ( E )  does not disconnect E4. In case that

bs =  bs =  b4 — o E = {x  ; xx =  ~  bx }
and

/ ( E )  =  { / ; / i  =  — h l — x l — xl  —  xl  +  c1 ; / 2 =  ct , f t =  c3 , f 4 =  r4 }

evidently does not disconnect E4. Since a polynomial (=(= constant) with quaternion coef­
ficients maps sequences tending to 00 onto sequences tending to 00, it is a polynomial 
mapping. Thus by theorem 7 one has / ( E4) =  E4.

Remark 6. A proof of the fundamental theorem of algebra using similar ideas can 
be found in [9] (See also [14], p. 390). The proofs mentioned in Remarks 4 and 5 seem 
to be less topological ” (for example the notion of a compactification is not used there). 
In fact the only properties used in these proofs are:

(i) the continuity of a complex polynomial,
(ii) the connectedness of the Euclidean plane and of the Euclidean plane without 

a finite set of points and the local compactness,
(iii) the fact that a non constant complex polynomial maps sequences tending to 00 

onto sequences tending to 00,
(iv) the inverse function theorem,

(this last property can be proved (See Remark. 4) by using the contraction mapping principle) 
and

(v) the fact that a complex polynomial has at most a finite number of roots.

A p p lic a t io n  7. Let F : X -> Y be a polynomial mapping of a separable 
Banach space X into an infinite dimensional Banach space Y such that 
Int F(X) =J= 0  and suppose that

(13) [x e X and F(x) £ Int F (X)]
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implies the existence of an open neighborhood U  =  JJX of x  such th a t F(U) 
is contained in a finite dim ensional plane Qx C Y (the dimension of Q* m ay 
depend on oc).

T hen F(X) =  Y.

Proof. Let J1 be the set of all points x  e  X such that for some neighborhood 
U == Ux , F(U) is contained in a finite dimensional plane Q# C Y. By (13) and Theorem 3 
of [3] the set J =  F'QO does not disconnect Y (i.e., Y \ J  is connected). It remains to 
apply Theorem 7.

In  the following application which can be proved also directly the 
notion of polynom iality of the m apping is not used.

A p p lic a t io n  8. Let 9 ( t , u) be a real valued continuous function 
— 00 <  t , u <  00 such th a t there exist functions oc (t) and ß (/) with 
o <  a (t) <  (pu ( t , u) <  ß (t) for all —  oc <  u <  00 (no continuity or bound­
edness assum ptions are m ade about oc (/) , 9* ( t , u) , ß (/)). T hen there exists 
a unique continuous function E, (t) , —  00 <  t <  00 such th a t 9 ( t , E, (t)) =  o 
or all —  00 <  t <  00.

Proof. Consider the linear (real) space X of all continuous real valued functions 
x  = x  if) , —  00 < t <  00 with the uniformity generated by the set p  of pseudometrics 
(even seminorms) p t defined by p t ( x , y) =  \ x(I) — y(t) | for x  , y  £ X, where — 00 < I <  00. 
The space X is clearly complete uniform Hausdorff (not metrizable).

Define / : X ^ X  by f ( x  (/)) =  x  (t) ------x ^  9 (/ , x  (/)). For a fixed t denote
m — a '(/) and M =  ß if). Then

x i t)—y  (I)
9U (t , û) 
I +  M (x(t) yit)) < U I -f M -) Pt ix y y ) .

yyi
Putting \pt (x) — i —  ̂ ^  it is trivially seen that f  : X X is a (X , P)‘ mapping satis­
fying the assumptions {a') — (c') of Theorem 6 {rp =  rpt — 00 for every p t c P). Thus by 
Theorem 6 there exists a unique fixed point £==/.(£) e X. It follows that the unique 
function $ if) € X satisfies 9 (/, E, (I)) =  o for all — 00 <  t  <  00.

W e conclude the paper with two problems.

P ro b le m  i. It can be easily shown tha t if A  =  A  (#0) : X X is a 
linear m apping of a Banach space X into itself such th a t for points x  , y  of 
the ball B (xQ , r) one has \ \x— y  —  A  ( f  ( x ) — f  (y)) || <  a \ \ x— y\\ w ith 
a  <  I , x  =j=y, where /  : X -> X is a m apping of X into itself, then / ( B  (x0 , r)) 
contains a ball B ( f  (x0) , r0) w ith radius r0 =  —- r. In  R em ark 4 this 
p roperty  together w ith the fact th a t the set of roots of a polynom ial does not 
disconnect the plane was used for A x  =  x  to prove the fundam ental
theorem  of algebra. It can be easily shown th a t the set E of roots of a 
polynom ial f  w ith quaternion coefficients can be covered by a finite number 
of 2—dimensional spheres and thus /  (E) does not disconnect the four 
dim ensional Euclidean space E 4. U sing sim ilar ideas as in R em ark 4 and 
the notion of a differential of a quaternion function (See [4], p. 430) prove 
the “ fundam ental theorem  of algebra for q u a te rn io n s” (See [13] and [2]).

11. — RENDICONTI 1971, Voi. L, fase. 2.
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P ro b le m  2. Let / : E - V Y  be a m apping of a subset E of a Banach 
space X into a Banach space Y. Find non-trivial conditions on E and /  
under which Y \ / ( E )  is connected (It follows easily from the results in [3] 
th a t if /  is completely continuous and Y is infinite dim ensional then Y \ / ( E )  
is connected for every E).
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