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Topologia.— Cubical polyhedra and homotopy. Nota di JOZEF Brass
e Weropzimierz HorszrvNski, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Per ogni spazio topologico, X, viene assegnata una costruzione fun-
toriale di un complesso cubico QX. Quando X ¢ compatto, QX risulta equivalente ad X
(a meno di un’omotopia), ed ¢ una dualizzazione del semisimpliciale S(X). Di tutto cid
verranno fatte numerose applicazioni in lavori successivi.

In the present paper we define the category QP of cubical polyhedra
and we introduce for a topological space X the cubical polyhedron QX. In
the case of a compact space X, the homotopy types of X and QX are shown
to be naturally equivalent. More precisely:

Let Ht be the homotopy functor, let Q be the functor assigning QX to X
and let Fo: QP — Top be the * forgetful ”’ functor. We construct a natural
transformation I' : HtoFooQ — Ht, and we show that I' restricted to compact
spaces is a natural equivalence. This is a dualization of semi-simplicial S (X)
and of the natural weak homotopy equivalence S(X) — X. We also show,
that QX can be represented as the limit of an inverse system of finite polyhedra.
This was used to construct a homology theory of the Cech type built on the
cubical scheme. We will present this construction in forthcoming papers.

Throughout this paper we will use the following notations:

Id, - the iidentity map of A onto A;

f g — set-theoretical composition of f and g (composition in the category
of  sets); ,

feg — composition of f and g in a category;

I =[—1;1] — the set of real x such that —1 <x < 1;

F(a,s):{x:v'<xa>a€AIA:xa28}; )

Top — the topological category of pairs;

Ht is the homotopy functor and HtTop is the category of topological pairs

with homotopy classes of mappings as morphisms. We will often use [f] to
denote Ht(f).

1. THE CUBICAL CATEGORY QP

Let B: B —{—1,1} be a function defined on a subset B of A. Then
define
Fg = Fese
2a€B

and we call Fﬂ a face of I*. If B=A then Fj is a single element set consisting
of a vertex of IA.

(*) Nella seduta del 20 febbraio 1971.
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If B=go then we define Fy = I*.

All faces are non-empty sets. If Fy, F, are faces of I*, 8:B—{—1,1},
vy:C—>{—1,1}, BUCCA, then

FsCF, if CCB and y=p|C.

If XCI* then carr X will denote the smallest face containing X. In

the case of a single element set X — {x} we will write carr x instead of
carr {x}.

(1.1) . DEFINITION. A subset W of I* is said to be a cubical polyhedron
(or simply a polyhedron) iff

W = [J{carr x:x €e W}.
A pair (W, V) consisting of polyhedra VCWCI* is said to be a polyhedral
pair. :
Thus every polyhedron WCI* is a union of faces of I*. Obviously,

the converse is also true. Every union of a family of faces of I* is a poly-
hedron.

We will always identify a pair (W, o) and W.

(1.2) THEOREM. Let WC I* be a polyhedron and let Fy be a face of 12,
where B:B —{—1,1} for a subset B of A. Then

Fs CW 2f N{Guey:a€A\B or B(@a)=c}+0o
where G,y = W\ Fu,_g for a€A, e=+41.
Proof. Suppose that FgC W. Let
. _ (o for xe€A\B
T Bla) for x€B.
Obviously x € Gg,y if a€ANB or B(e) =e. Thus

@) x € {Guo:a€A\B or B(@)=c}=o.

Conversely, if (i) holds for an x = (x,),ea € I*, then |x,| =1 for a € A\ B
and x,=F—B(a) for a€B.

Let F, = carr x for a function vy:C —{—1,1}. Then CCB and
vy=B|C. Thus F;CF,CW.

(1.3)  DEFINITION. Given polyhedral pairs (W,V) and (Wi ,Vi), VCWCIA
and Vi C Wi C I™. A cubical morphism ¢ :(W,V) - (W V1) is a
function ¢:A; —A such that f,(W) C Wi and f,(V)C Vi, where
f,: 141" is a map given by (f,(x)), = %,,, for every a€A; and
% = (% )uca €I*. The composition pog:(W,V) = (Wa,Vs) of
cubical morphisms ¢ : (W,V) - (W1 ,V1) and p:(W1,Vi) = (Wz Vo)
is defined by

pPeg=qep.
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The unit morphism 1wy, is defined by
1wy = Ida (for VCWCI*.
Thus Jiowyy = Idjx . _
(1.4) DEFINITION. The cubical category QP is the category of polyhedral
pairs and cubical morphisms of such pairs.

In the next sections we will deal with ¢ forgetful ” functor Fo: QP — Top
and the functor F = Ht o Fo: QP — HtTop. These functors are given by

(1.5) Fo(W,V)=F (W, V)= (W, V)

for every polyhedral pair (W, V), and

(1.6) Folg) =f, (see def. (1.3))
and

(r.7) F(g) = Ht(fp) = [/]-

The following simple propositions will be useful.

(1.8) PROPOSITION. Zet % = (x,)oca €14 and BCA and B:B —{—1, 1}.
Then carr x=Fy iff B={a € A: |x,|=1} and B(a) ==z, for every a € B.

(1.9) PROPOSITION. Let g: (W ,Wo) = (V,Vo) be a 1—1 continuous
map of a polyhedral pair (W, Wo) onto (V,Vo) (hence g(W)=V
and g (Wo) = Vo) and let g be induced by a cubical morphism
g: (W, Wo) >V ,Vy), de. let g=f,=Fy(g). Then g is a cubical
isomorphism of (W, Wo) and (V,Vo) and the inverse function g™ is
induced by ¢1,g7t = F,(¢7Y) (Hence g is a homeomorphism).

2. THE CUBICAL NERVES

Let X be a topological space and let T = T(X) be the family of all
functionally open subsets of X ). We will also use the following notation

| A(X) = {G = (G_1,G1) € TXT :G_1U Gy = X},
and we define m:A(X) T as

7(G) = G, for every G = (G_1,G1)€A(X) , e=-1.
Next, for BCACA(X), B:B —>{—1,1} and XoC X we put
(2.1) supp Fy = (1{re(G):G €A\B or B(G) = ¢}

(1) Le. of sets of the form f™*(R\{o}), where f: X— R is a continuous real-valued
function. '

10. — RENDICONTT 1971, Vol. L, fasc. 2,



134 Lincei — Rend. Sc. fis. mat. e nat. — Vol. L. — febbraio 1971 [94]

and
(2.2) suppy Fp = X, N supp Fp.

We define also the nerve Nx A of ACA(X) in X,C X, as a subpolyhedron
of I* such that

(2.3) Fs C NXOA iff SUppy. Fe==o.

For X and (X, Xo) we put |

(2.4) NA=N;A and NA((X,Xp)={NA, Ny A).

(2.5) PROPOSITION. Let XoC X and BCACA(X). Then the inclusion
map i3 : B—>A is a cubical morphism from NA(X , Xo) into NB(X, Xo).

Proof. The map f;: I* - 1° for i = ip (see def. (1.3)) is the projection

pg I T Let x = (*e)gea € Nx,,A' Then carr x C NXOA. By Prop,
(1.8) that means

XoNN{m(G):26=F—¢ and Ge€A}==g.
Thus
XoNN{7(G):2#c+=—¢ and Ge€B}i=g,

and ph () = (x,),cp € NgB.  Thus py(N3xA)CNyB for any XoC X.
In particular, pg (NA) CNB. Thus z'g is a cubical morphism of NA (X, X,)
into NB (X, X,).
Obviously
(2.6) if CCBCACA(X) then it=:"0it.
(2.7) PRrOPOSITION. Let g: (X, Xo) — (Y,Yo) be a continuous map of
topological pairs and let A CA(X), BCA(Y) be such sets that g~ *(B) CA.
Then the function N§(g):A1—A given by (N3(g)(G) =g 1(G) @
is a cubical morphism of NA (X, Xo) énto NB(Y,Yo).

The proof is similar to the proof of Prop. (2.5) (which is a special case
of the above (2.7)).
Obviously

If composition of continuous maps gef is defined as well as N3 (f)
and N¢ (g) then N&(gef) is defined and

(2.8) Ng(gef) = Ng(g) o Ny (f).

(2) £(B)={g " (G):GeB}, where g(G)=(g"(G-1),& " (G1) for G=(G-1,G1).
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3. THE CUBICAL FUNCTOR Q
Let FinK denote the family of all finite subsets of K.
(3.1) DEFINITION. Let Xo be a subspace of X. We define
Qe Xy = H{PN ™ (Ng A) : A € FinA(X)}

QX =Q,0Q0 and
QX, Xo) = QX QXXO) .
Evidently
(3'2> x = ( >GGA(X) € QX iff

XoN{rm.(G):xg=—¢ and Ge€A}=5=g for every A€FinA(X).

(3.3) ProrosiTION. Let f: (X, Xo) = (Y,Yo) be a continuous map. Then
the function Q(f):A(Y) —>AX) given by Q(f)) (G) =f"1(G) for
every G €A(Y) is a cubical morphism of Q(X,Xo) into Q(Y,Yo).

(3.4) PROPOSITION. If composition gef of continuous maps of topological

pairs is deﬁnm’ then Q(g)oQ(f) is defined and Q(g)e Q(f) =
Qge)=Q(f)*Q (-

We have also

(3-5) Q@dx,x,) = Iox.x, -

Thus we have obtained a functor Q: Top - QP. We call this functor
the cubical functor. Functor Q has the following important properties, which
are direct consequences of def. (3.1) and Prop. (3.3).

(3.6) ProPERTY. (Q (X, X)), pg(x): B e Fin A (X)) is a representation of
Q (X, Xo) as the inverse limit of the system

(NA(X, X)), p2:BCAeFinA(X)

in the category Top (g3 = F, (z'g‘) denotes the projection map I4— IB
induced by the inclusion ig: B —->A, BCA).

(3.7) PROPERTY. Let g:(X, Xo) - (Y,Yo) be a continuous map. Then
the map fow = FpoQ(£): QX , Xo) > Q(Y,Yo) is the inverse limit
map in Top of maps g5:NA (X, X¢) - NB(Y,Yo), A D f1(B),

A A -
g = Ty (NBg ).
Using Prop. (1.9), we obtain from the above two properties the following
analogous properties in Top

(3.8) ProPERTY. QX , X)), ? A(X) :B€FinA(X)) is a representation of
Q (X, Xo) as the inverse hmlt of the system

(N4(X ,Xo), 75 : BCA€FinA(X)) in the cubical category QP.
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(3.9) ProPERTY. Let g: (X, Xo) - (Y,Yo) be a continuous map. Then
Qlg) : Q(X,Xo) > Q(Y,Yo) is the inverse limit morphism of
morphisms Nig (F1(B)C A€FinA(X) and BeFinA(Y)) in the
cubical category QP.

4. THE NATURAL TRANSFORMATION @ :Ht —F o Q

To each pair G = (G_1,G1) € A(X) we assign a continuous function
fo: X =1 such that

(4.1) FSol XNGe =—¢ for e= 4 I

We also define the continuous function f = X >QXC ¥ as

F@) =(fo®Nges Lo f=_ A Jo-

G EAX)
The following proposition shows that the mapping f is well defined.

(4.2) PROPOSITION. f(X,Xo)CQ(X,Xo) z.e. F(X)CQX and f(Xy)CQxX, -

Proof. We will show that /(X,)C Q4 X,. Set A€ FinA (X) and suppose
that x € X,. Note that if /() 94=—c¢ then 2 €G,.
Therefore

XoN{me(G): (f(®);F=—¢ and GeA}d=2.

Hence (see (3.2)) f(x)€QyX,. Thus f(Xy) CQyx(Xy. In particular
J(®) C Qx(X) = QX.
The following assertion is evident.

(4.3) PROPOSITION. LZet f'= A fi: X —>XCI* by another mapping such
GEA

that fo| X\NGe= —c¢ for every Ge€A and e¢= + 1. Then
fef(X,Xo) > Q(X,Xo) and we have a canonical homotopy
(X, Xo) I — QX , Xo) given by the formula

h(x,t)=0—8) f(x) +tf'(x) for t€l and xe€X.

Proof. Indeed, for f,= A f., given by f,(x) =44 (x,?),
: GeA
ficl XNG: =¢ (see (4.1)).

Thus the homotopy class of f: (X, Xo) = Q (X, Xo) which satisfies
(4.1)," depends only on (X, Xg), and we can define ®:Ht >F . Q by
putting

‘ D (X, Xo) = [f].

(4.4) THEOREM. ®:Ht +F o Q is a natural transformation.

Progf. Let ¢:(X,Xo) = (Y,Yo) be a continuous mapping and let

@ (Y,Yo) = [g] for some g= A g, such that (4.1) holds for every g, and
GeA(Y)
G e€A(Y). Then let

Sote) =8go® for every GeA(Y)
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and let f, for GEA(X)\ 971 (A(Y)), be a mapping such that (4.1) holds."
Then for f= A f, we have ®(X,X¢) =[f] and gop — (FooQ)(¢)of.

G € A(X)

Thus [g]e[¢] = (FoQ) (¢) [f] and finally
O (YY) o Ht(g) = (Fo Q) () » ® (X, Xy).

5. THE NATURAL TRANSFORMATION Ig: Foo Q| Comp — Icomp

For a compact space X we define the function g as g = I'o (X) : QX — X.
Let x = (x5)g c » € QX and let F(x) be the filter in the lattice T = T(X)
generated by the family

(5.1) B(x) ={m(G):2cF—c, GeAX)}.

Thus, for every G €A (X), we have either G_; €F(x) or G, €F(x). In
other words, G_; €5 (x) or G;€&(x) for every G_;, G, €T such that
G_;UG; = X. Thus, §(x) has the unique limit in X. We define g: QX - X
by the formula

(5.2) g(x) =1lm8& ().
(5.3) LEMMA. g:QX —X 45 a continuous mapping.

Let x = (x;)5c2 €QX and let V be a neighborhood of g(x) in X.
Let ¢:X —1 be a continuous mapping such that ¢(g(x))=1 and
@ | X\V =—1. Then for G_;=¢ }([—1;1/2)) and G1 = ¢ }(—1/2; 1])
we have that G = (G_;,G1) €A and g(x)¢ G_; and G;C V. Thus G_; € &(x)
and G1€ &(x). The set U={y = (Jylueca€ QX :y;,>—1} is a neigh-
borhood of x in QX (x,= 1) such that ¢(U)C GiCV. Q.ED.

(5.4) LEMMA. Let X, be a compact subspace of X. Then g(Qx (X)) C X,.

Proof. Suppose ¥ = (¥g)geax) € Qx (X,). Then the family
{m(G) N Xy: Ge A(X) and xg==¢} has the finite intersection property.
Therefore, g(x) = lim §(x) € X,,. ,

Using (4.4) we can consider ¢ as a mapping g:Q (X, Xo) = (X, Xo)
for every compact pair (X, Xo). Let Comp be the category of compact pairs.
We have thus obtained a transformation I'g: Fgo Q| Comp — Icomp such
that T'o (X, Xo) =¢g:Q (X, Xo) - (X, Xo).

(5.5) THEOﬁEM. To:FooQ|Comp — Icomp 25 @ matural transformation.

6. @® AND I' AS NATURAL EQUIVALENCES

In this section we will prove the basic theorem of this paper.

(6.1) THEOREM. Let I': FoQ|Comp—>Ht |Comp be the natural transformation
induced by To (see § 5) and let ® | Comp : Ht | Comp — Fo Q |Comp
be the restriction of ® (see § 4). Then @ |Comp = I''?, and
consequently I' and ®|C are mnatural equivalences.
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Proof. If (X,Xo)€C and [f]= @ (X, Xo) then

(6.2) Lo (X, Xo) o f = Idx %y .

and for A(x,t)=(—8x+2-(foTo(X,Xo) (x), x€Q(X,Xo), t€1I, if
6.3) h((X, Xo)xI) CQ (X, Xo)

then

(6.4) Foly (X, Xp) = o g

Thus it suffices to prove (6.3).
Let x€QyXo and o<#<1 and let g =T (X, Xy). Then (by (5.1))

Blh(x, ) =B(—Hx+7¢-(fee)(®) =B U B(fog).
Since the family {U N Xo:U € B(x)} has the finite intersection property,
and g(x) €U N Xo for every U€F (x), and g(x)€V for every Ve B(f og(x))
‘it follows that {UN Xo:Ue€ B(%(x,#))} has the finite intersection property.
Thus, % (x,£) €QxXo. In particular, for X = Xo we have % (x,?#) € QX.



