Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Józef Blass, WŁodzimierz Holsztyński

Cubical polyhedra and homotopy

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 50 (1971), n.2, p. 131-138.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1971_8_50_2_131_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Topologia.-Cubical polyhedra and homotopy. Nota di Józef Blass e Weodzimierz Holsztyński, presentata (*) dal Socio B. Segre.

Riassunto. - Per ogni spazio topologico, X , viene assegnata una costruzione funtoriale di un complesso cubico QX . Quando X è compatto, QX risulta equivalente ad X (a meno di un'omotopia), ed è una dualizzazione del semisimpliciale $\mathrm{S}(\mathrm{X})$. Di tutto ciò verranno fatte numerose applicazioni in lavori successivi.

In the present paper we define the category QP of cubical polyhedra and we introduce for a topological space X the cubical polyhedron QX . In the case of a compact space X , the homotopy types of X and QX are shown to be naturally equivalent. More precisely:

Let Ht be the homotopy functor, let Q be the functor assigning QX to X and let $\mathrm{F}_{0}: \mathrm{QP} \rightarrow$ Top be the "forgetful" functor. We construct a natural transformation $\Gamma: \mathrm{Ht}^{\circ} \mathrm{F}_{0} \circ \mathrm{Q} \rightarrow \mathrm{Ht}$, and we show that Γ restricted to compact spaces is a natural equivalence. This is a dualization of semi-simplicial $\mathrm{S}(\mathrm{X})$ and of the natural weak homotopy equivalence $S(X) \rightarrow X$. We also show, that QX can be represented as the limit of an inverse system of finite polyhedra. This was used to construct a homology theory of the Čech type built on the cubical scheme. We will present this construction in forthcoming papers.

Throughout this paper we will use the following notations:
Id_{A} - the identity map of A onto A ;
$f \circ g$ - set-theoretical composition of f and g (composition in the category of sets);
$f \bullet g$ - composition of f and g in a category;
$\mathrm{I}=[-\mathrm{I} ; \mathrm{I}]$ - the set of real x such that - $\mathrm{I} \leq x \leq \mathrm{I}$;
$\mathrm{F}_{(a, \varepsilon)}=\left\{x=\left(x_{\alpha}\right)_{\alpha \in \mathrm{A}} \mathrm{I}^{\mathrm{A}}: x_{a}=\varepsilon\right\} ;$
Top - the topological category of pairs;
Ht is the homotopy functor and HtTop is the category of topological pairs with homotopy classes of mappings as morphisms. We will often use [f] to denote $\mathrm{Ht}(f)$.

i. The cubical category QP

Let $\beta: B \rightarrow\{-\mathrm{I}, \mathrm{I}\}$ be a function defined on a subset B of A . Then define

$$
\mathrm{F}_{\beta}=\bigcap_{a \in \mathrm{~B}} \mathrm{~F}_{(a, \beta(a))}
$$

and we call F_{β} a face of I^{A}. If $B=A$ then F_{β} is a single element set consisting of a vertex of I^{A}.

[^0]If $B=\varnothing$ then we define $F_{\beta}=I^{A}$.
All faces are non-empty sets. If $\mathrm{F}_{\beta}, \mathrm{F}_{\gamma}$ are faces of $\mathrm{I}^{\mathrm{A}}, \beta: \mathrm{B} \rightarrow\{-\mathrm{I}, \mathrm{I}\}$, $\gamma: C \rightarrow\{-\mathrm{I}, \mathrm{I}\}, \quad \mathrm{B} \cup \mathrm{C} \subset \mathrm{A}$, then

$$
\mathrm{F}_{\beta} \subset \mathrm{F}_{\gamma} \quad \text { iff } \quad \mathrm{C} \subset B \quad \text { and } \quad \gamma=\beta \mid \mathrm{C} .
$$

If $\mathrm{XCI} \mathrm{I}^{\mathrm{A}}$ then carr X will denote the smallest face containing X . In the case of a single element set $\mathrm{X}=\{x\}$ we will write carr x instead of carr $\{x\}$.
(i.i). Definition. A subset W of I^{A} is said to be a cubical polyhedron (or simply a polyhedron) iff

$$
\mathrm{W}=\mathrm{U}\{\operatorname{carr} x: x \in \mathrm{~W}\}
$$

A pair (W, V) consisting of polyhedra $V C W \subset I^{A}$ is said to be a polyhedral pair.

Thus every polyhedron $W C I^{A}$ is a union of faces of I^{A}. Obviously, the converse is also true. Every union of a family of faces of I^{A} is a polyhedron.

We will always identify a pair (W, $($) and W.
(1.2) Theorem. Let $\mathrm{WC} \mathrm{I}^{\mathrm{A}}$ be a polyhedron and let F_{β} be a face of I^{A}, where $\beta: \mathrm{B} \rightarrow\{-\mathrm{I}, \mathrm{I}\}$ for a subset B of A . Then

$$
\mathrm{F}_{\beta} \subset \mathrm{W} \text { iff } \cap\left\{\mathrm{G}_{(a, \varepsilon)}: a \in \mathrm{~A} \backslash \mathrm{~B} \text { or } \beta(a)=\varepsilon\right\} \neq \varnothing
$$

where $\mathrm{G}_{(a, \mathrm{\varepsilon})}=\mathrm{W} \backslash \mathrm{F}_{(a,-\varepsilon)}$ for $a \in \mathrm{~A}, \quad \varepsilon= \pm \mathrm{I}$.
Proof. Suppose that $\mathrm{F}_{\beta} \subset \mathrm{W}$. Let

$$
x_{a}=\left\{\begin{array}{lll}
0 & \text { for } & x \in \mathrm{~A} \backslash \mathrm{~B} \\
\beta(a) & \text { for } & x \in \mathrm{~B} .
\end{array}\right.
$$

Obviously $x \in \mathrm{G}_{(a, \varepsilon)}$ if $a \in \mathrm{~A} \backslash \mathrm{~B}$ or $\beta(a)=\varepsilon$. Thus

$$
\begin{equation*}
x \in \bigcap\left\{\mathrm{G}_{(a, \varepsilon)}: a \in \mathrm{~A} \backslash \mathrm{~B} \text { or } \beta(a)=\varepsilon\right\} \neq \varnothing \tag{i}
\end{equation*}
$$

Conversely, if (i) holds for an $x=\left(x_{a}\right)_{a \in \mathrm{~A}} \in \mathrm{I}^{\mathrm{A}}$, then $\left|x_{a}\right| \neq \mathrm{I}$ for $a \in \mathrm{~A} \backslash \mathrm{~B}$ and $x_{a} \neq-\beta(a)$ for $a \in B$.

Let $\mathrm{F}_{\gamma}=\operatorname{carr} x$ for a function $\gamma: \mathrm{C} \rightarrow\{-\mathrm{I}, \mathrm{I}\}$. Then $\mathrm{C} \subset \mathrm{B}$ and $\gamma=\beta \mid C$. Thus $F_{\beta} \subset F_{\gamma} \subset W$.
(I.3) Definition. Given polyhedral pairs (W, V) and $\left(\mathrm{W}_{1}, \mathrm{~V}_{1}\right), \mathrm{V} \subset \mathrm{W} \subset \mathrm{I}^{\mathrm{A}}$ and $\mathrm{V}_{1} \subset \mathrm{~W}_{1} \subset \mathrm{I}^{\mathrm{A}_{1}}$. A cubical morphism $q:(\mathrm{W}, \mathrm{V}) \rightarrow\left(\mathrm{W}_{1}, \mathrm{~V}_{1}\right)$ is a function $q: \mathrm{A}_{1} \rightarrow \mathrm{~A}$ such that $f_{q}(\mathrm{~W}) \subset \mathrm{W}_{1}$ and $f_{q}(\mathrm{~V}) \subset \mathrm{V}_{1}$, where $f_{q}: \mathrm{I}^{\mathrm{A}} \rightarrow \mathrm{I}^{\mathrm{A}_{1}}$ is a map given by $\left(f_{q}(x)\right)_{a}=x_{a(a)}$ for every $a \in \mathrm{~A}_{1}$ and $x=\left(x_{\alpha}\right)_{\alpha \in \mathrm{A}} \in \mathrm{I}^{\mathrm{A}}$. The composition $p \circ q:(\mathrm{W}, \mathrm{V}) \rightarrow\left(\mathrm{W}_{2}, \mathrm{~V}_{2}\right)$ of cubical morphisms $q:(\mathrm{W}, \mathrm{V}) \rightarrow\left(\mathrm{W}_{1}, \mathrm{~V}_{1}\right)$ and $p:\left(\mathrm{W}_{1}, \mathrm{~V}_{1}\right) \rightarrow\left(\mathrm{W}_{2}, \mathrm{~V}_{2}\right)$ is defined by

$$
p \circ q=q \bullet p
$$

The unit morphism $1_{(\mathrm{w}, \mathrm{v})}$ is defined by

$$
1_{(\mathrm{W}, \mathrm{~V})}=\mathrm{Id}_{\mathrm{A}} \quad\left(\text { for } \quad \mathrm{V} \subset \mathrm{~W} \subset \mathrm{I}^{\mathrm{A}}\right)
$$

Thus $f_{\mathbf{1}_{(\mathrm{W}, \mathrm{v})}}=\mathrm{Id}_{\mathrm{I}^{\star}}$.
(I.4) Definition. The cubical category QP is the category of polyhedral pairs and cubical morphisms of such pairs.

In the next sections we will deal with " forgetful" functor $\mathrm{F}_{0}:$ QP \rightarrow Top and the functor $\mathrm{F}=\mathrm{Ht} \circ \mathrm{F}_{0}: \mathrm{QP} \rightarrow \mathrm{HtTop}$. These functors are given by

$$
\begin{equation*}
\mathrm{F}_{0}(\mathrm{~W}, \mathrm{~V})=\mathrm{F}(\mathrm{~W}, \mathrm{~V})=(\mathrm{W}, \mathrm{~V}) \tag{I.5}
\end{equation*}
$$

for every polyhedral pair (W, V), and

$$
\begin{equation*}
\mathrm{F}_{0}(q)=f_{q} \quad \text { (see def. (I.3)) } \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}(q)=\mathrm{Ht}\left(f_{q}\right)=\left[f_{q}\right] . \tag{1.7}
\end{equation*}
$$

The following simple propositions will be useful.
(1.8) Proposition. Let $x=\left(x_{a}\right)_{a \in \mathrm{~A}} \in \mathrm{I}^{\mathrm{A}}$ and BCA and $\beta: \mathrm{B} \rightarrow\{-\mathrm{I}, \mathrm{I}\}$. Then carr $x=\mathrm{F}_{\beta}$ iff $\mathrm{B}=\left\{a \in \mathrm{~A}:\left|x_{a}\right|=\mathrm{I}\right\}$ and $\beta(a)=x_{a}$ for every $a \in \mathrm{~B}$.
(I.9) Proposition. Let $g:\left(\mathrm{W}, \mathrm{W}_{0}\right) \rightarrow\left(\mathrm{V}, \mathrm{V}_{0}\right)$ be $a \mathrm{I}-\mathrm{I}$ continuous map of a polyhedral pair ($\mathrm{W}, \mathrm{W}_{0}$) onto $\left(\mathrm{V}, \mathrm{V}_{0}\right)$ (hence $g(\mathrm{~W})=\mathrm{V}$ and $g\left(\mathrm{~W}_{0}\right)=\mathrm{V}_{0}$) and let g be induced by a cubical morphism $q:\left(\mathrm{W}, \mathrm{W}_{0}\right) \rightarrow\left(\mathrm{V}, \mathrm{V}_{0}\right)$, i.e. let $g=f_{q}=\mathrm{F}_{0}(q)$. Then q is a cubical isomorphism of $\left(\mathrm{W}, \mathrm{W}_{0}\right)$ and $\left(\mathrm{V}, \mathrm{V}_{0}\right)$ and the inverse function g^{-1} is induced by $q^{-1}, g^{-1}=\mathrm{F}_{0}\left(q^{-1}\right)$ (Hence g is a homeomorphism).

2. The cubical nerves

Let X be a topological space and let $T=T(X)$ be the family of all functionally open subsets of $\mathrm{X}^{(1)}$. We will also use the following notation

$$
A(X)=\left\{G=\left(G_{-1}, G_{1}\right) \in T \times T: G_{-1} \cup G_{1}=X\right\}
$$

and we define $\pi_{\varepsilon}: \mathrm{A}(\mathrm{X}) \rightarrow \mathrm{T}$ as

$$
\pi_{\varepsilon}(G)=G_{\varepsilon} \quad \text { for every } \quad G=\left(G_{-1}, G_{1}\right) \in A(X) \quad, \quad \varepsilon= \pm 1
$$

Next, for $B \subset A \subset A(X), \beta: B \rightarrow\{-I, I\}$ and $X_{0} \subset X$ we put

$$
\begin{equation*}
\operatorname{supp} F_{\beta}=\bigcap\left\{\pi_{\varepsilon}(G): G \in A \backslash B \text { or } \beta(G)=\varepsilon\right\} \tag{2.1}
\end{equation*}
$$

[^1]and
\[

$$
\begin{equation*}
\operatorname{supp}_{\mathrm{x}_{0}} \mathrm{~F}_{\beta}=\mathrm{X}_{0} \cap \operatorname{supp} \mathrm{~F}_{\beta} \tag{2.2}
\end{equation*}
$$

\]

We define also the nerve $\mathrm{N}_{\mathrm{X}_{0}} \mathrm{~A}$ of $\mathrm{ACA}(\mathrm{X})$ in $\mathrm{X}_{0} \subset \mathrm{X}$, as a subpolyhedron of I^{A} such that

$$
\begin{equation*}
\mathrm{F}_{\beta} \subset \mathrm{N}_{\mathrm{x}_{0}} \mathrm{~A} \quad \text { iff } \quad \operatorname{supp}_{\mathrm{x}_{0}} \mathrm{~F}_{\beta} \neq \varnothing \tag{2.3}
\end{equation*}
$$

For X and ($\mathrm{X}, \mathrm{X}_{\mathbf{0}}$) we put

$$
\begin{equation*}
N A=N_{x} A \quad \text { and } \quad N A\left(X, X_{0}\right)=\left(N A, N_{X_{0}} A\right) \tag{2.4}
\end{equation*}
$$

(2.5) Proposition. Let $\mathrm{X}_{0} \subset \mathrm{X}$ and $\mathrm{B} \subset \mathrm{A} \subset \mathrm{A}(\mathrm{X})$. Then the inclusion map $i_{\mathrm{B}}^{\mathrm{A}}: \mathrm{B} \rightarrow \mathrm{A}$ is a cubical morphism from $\mathrm{NA}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ into $\mathrm{NB}\left(\mathrm{X}, \mathrm{X}_{0}\right)$.
Proof. The map $f_{i}: \mathrm{I}^{\mathrm{A}} \rightarrow \mathrm{I}^{\mathrm{B}}$ for $i=i_{\mathrm{B}}^{\mathrm{A}}$ (see def. (I.3)) is the projection $p_{\mathrm{B}}^{\mathrm{A}}: \mathrm{I}^{\mathrm{A}} \rightarrow \mathrm{I}^{\mathrm{B}}$. Let $x=\left(x_{\mathrm{G}}\right)_{\mathrm{G} \in \mathrm{A}} \in \mathrm{N}_{\mathrm{X}_{0}} \mathrm{~A}$. Then carr $x \subset \mathrm{~N}_{\mathrm{X}_{0}} \mathrm{~A}$. By Prop. (I.8) that means

$$
\mathrm{X}_{0} \cap \cap\left\{\pi_{\varepsilon}(\mathrm{G}): x_{\mathrm{G}} \neq-\varepsilon \quad \text { and } \quad \mathrm{G} \in \mathrm{~A}\right\} \neq \varnothing
$$

Thus

$$
\mathrm{X}_{0} \cap \cap\left\{\pi_{\varepsilon}(\mathrm{G}): x_{\mathrm{G}} \neq-\varepsilon \quad \text { and } \quad \mathrm{G} \in \mathrm{~B}\right\} \neq \varnothing
$$

and $p_{\mathrm{B}}^{\mathrm{A}}(x)=\left(x_{a}\right)_{a \in \mathrm{~B}} \in \mathrm{~N}_{\mathrm{X}_{0}} \mathrm{~B}$. Thus $p_{\mathrm{B}}^{\mathrm{A}}\left(\mathrm{N}_{\mathrm{X}_{0}} \mathrm{~A}\right) \subset \mathrm{N}_{\mathrm{X}_{0}} \mathrm{~B}$ for any $\mathrm{X}_{0} \subset \mathrm{X}$. In particular, $p_{\mathrm{B}}^{\mathrm{A}}(\mathrm{NA}) \subset \mathrm{NB}$. Thus $i_{\mathrm{B}}^{\mathrm{A}}$ is a cubical morphism of NA $\left(\mathrm{X}, \mathrm{X}_{0}\right)$ into $\mathrm{NB}\left(\mathrm{X}, \mathrm{X}_{0}\right)$.

Obviously

$$
\begin{equation*}
\text { if } \quad \mathrm{C} \subset \mathrm{~B} \subset \mathrm{~A} \subset \mathrm{~A}(\mathrm{X}) \quad \text { then } \quad i_{\mathrm{C}}^{\mathrm{A}}=i_{\mathrm{C}}^{\mathrm{B}} \circ i_{\mathrm{B}}^{\mathrm{A}} \tag{2.6}
\end{equation*}
$$

(2.7) Proposition. Let $g:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{Y}, \mathrm{Y}_{\mathbf{0}}\right)$ be a continuous map of topological pairs and let $\mathrm{A} \subset \mathrm{A}(\mathrm{X}), \mathrm{B} \subset \mathrm{A}(\mathrm{Y})$ be such sets that $g^{-1}(\mathrm{~B}) \mathrm{C} \mathrm{A}$. Then the function $\mathrm{N}_{\mathrm{B}}^{\mathrm{A}}(g): \mathrm{A}_{1} \rightarrow \mathrm{~A}$ given by $\left(\mathrm{N}_{\mathrm{B}}^{\mathrm{A}}(g)\right)(\mathrm{G})=g^{-1}(\mathrm{G}){ }^{(2)}$ is a cubical morphism of $\mathrm{NA}\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right)$ into $\mathrm{NB}\left(\mathrm{Y}, \mathrm{Y}_{0}\right)$.
The proof is similar to the proof of Prop. (2.5) (which is a special case of the above (2.7)).

Obviously
If composition of continuous maps $g \bullet f$ is defined as well as $\mathrm{N}_{\mathrm{B}}^{\mathrm{A}}(f)$ and $\mathrm{N}_{\mathrm{C}}^{\mathrm{B}}(g)$ then $\mathrm{N}_{\mathrm{C}}^{\mathrm{A}}(g \bullet f)$ is defined and

$$
\begin{equation*}
\mathrm{N}_{\mathrm{C}}^{\mathrm{A}}(g \bullet f)=\mathrm{N}_{\mathrm{C}}^{\mathrm{B}}(g) \circ \mathrm{N}_{\mathrm{B}}^{\mathrm{A}}(f) . \tag{2.8}
\end{equation*}
$$

(2) $g^{-1}(\mathrm{~B})=\left\{g^{-1}(\mathrm{G}): \mathrm{G} \in \mathrm{B}\right\}$, where $g^{-1}(\mathrm{G})=\left(g^{-1}\left(\mathrm{G}_{-1}\right), g^{-1}\left(\mathrm{G}_{1}\right)\right)$ for $\mathrm{G}=\left(\mathrm{G}_{-1}, \mathrm{G}_{1}\right)$.

3. The cubical functor Q

Let FinK denote the family of all finite subsets of K.
(3.1) Definition. Let X_{0} be a subspace of X . We define

$$
\begin{aligned}
& Q_{X} X_{0}=\bigcap\left\{\left(p_{\mathrm{A}}^{\mathrm{A}(\mathrm{X})}\right)^{-1}\left(\mathrm{~N}_{\mathrm{X}_{0}} \mathrm{~A}\right): \mathrm{A} \in \operatorname{Fin} \mathrm{~A}(\mathrm{X})\right\} \\
& \mathrm{QX}=\mathrm{Q}_{\mathrm{x}} \mathrm{Q} \quad \text { and } \\
& \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)=\left(\mathrm{QX}, \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0}\right) .
\end{aligned}
$$

Evidently

$$
\begin{equation*}
x=\left(x_{\mathrm{G}}\right)_{\mathrm{G} \in \mathrm{~A}(\mathrm{X})} \in \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0} \quad \text { iff } \tag{3.2}
\end{equation*}
$$

$\mathrm{X}_{0} \cap\left\{\pi_{\varepsilon}(\mathrm{G}): x_{\mathrm{G}} \neq-\varepsilon\right.$ and $\left.\mathrm{G} \in \mathrm{A}\right\} \neq \varnothing$ for every $\mathrm{A} \in \mathrm{Fin} \mathrm{A}(\mathrm{X})$.
(3.3) Proposition. Let $f:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{Y}, \mathrm{Y}_{\mathbf{0}}\right)$ be a continuous map. Then the function $\mathrm{Q}(f): \mathrm{A}(\mathrm{Y}) \rightarrow \mathrm{A}(\mathrm{X})$ given by $(\mathrm{Q}(f))(\mathrm{G})=f^{-1}(\mathrm{G})$ for every $\mathrm{G} \in \mathrm{A}(\mathrm{Y})$ is a cubical morphism of $\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ into $\mathrm{Q}\left(\mathrm{Y}, \mathrm{Y}_{0}\right)$.
(3.4) Proposition. If composition $g \bullet f$ of continuous maps of topological pairs is defined then $Q(g) \circ Q(f)$ is defined and $Q(g) \circ Q(f)=$ $\mathrm{Q}(g \bullet f)=\mathrm{Q}(f) \bullet \mathrm{Q}(g)$.
We have also

$$
\begin{equation*}
\mathrm{Q}\left(\operatorname{Id}_{\left(\mathrm{x}, \mathrm{x}_{0}\right)}\right)=\mathrm{I}_{\mathrm{Q}\left(\mathrm{X}, \mathrm{x}_{0}\right)} . \tag{3.5}
\end{equation*}
$$

Thus we have obtained a functor $\mathrm{Q}: \mathrm{Top} \rightarrow \mathrm{QP}$. We call this functor the cubical functor. Functor Q has the following important properties, which are direct consequences of def. (3.1) and Prop. (3.3).
(3.6) Property. ($\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right), p_{\mathrm{B}}^{\mathrm{A}(\mathrm{X})}: \mathrm{B} \in \mathrm{Fin} \mathrm{A}(\mathrm{X})$) is a representation of $\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ as the inverse limit of the system

$$
\left(\mathrm{N}_{\mathrm{B}}^{\mathrm{A}}\left(\mathrm{X}, \mathrm{X}_{0}\right), p_{\mathrm{B}}^{\mathrm{A}}: \mathrm{B} \subset \mathrm{~A} \in \operatorname{Fin} \mathrm{~A}(\mathrm{X})\right)
$$

in the category $\operatorname{Top}\left(p_{\mathrm{B}}^{\mathrm{A}}=\mathrm{F}_{0}\left(i_{\mathrm{B}}^{\mathrm{A}}\right)\right.$ denotes the projection map $\mathrm{I}^{\mathrm{A}} \rightarrow \mathrm{I}^{\mathrm{B}}$ induced by the inclusion $\left.i_{\mathrm{B}}^{\mathrm{A}}: \mathrm{B} \rightarrow \mathrm{A}, \mathrm{B} \subset \mathrm{A}\right)$.
(3.7) Property. Let $g:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{Y}, \mathrm{Y}_{\mathbf{0}}\right)$ be a continuous map. Then the map $f_{\mathrm{Q}(g)}=\mathrm{F}_{0} \circ \mathrm{Q}(g): \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right) \rightarrow \mathrm{Q}\left(\mathrm{Y}, \mathrm{Y}_{0}\right)$ is the inverse limit map in Top of maps $g_{\mathrm{B}}^{\mathrm{A}}: \mathrm{NA}\left(\mathrm{X}, \mathrm{X}_{0}\right) \rightarrow \mathrm{NB}\left(\mathrm{Y}, \mathrm{Y}_{0}\right), \mathrm{A} \supset f^{-1}(\mathrm{~B})$, $g_{\mathrm{B}}^{\mathrm{A}}=\mathrm{F}_{0}\left(\mathrm{~N}_{\mathrm{B}}^{\mathrm{A}} g\right)$.
Using Prop. (I.9), we obtain from the above two properties the following analogous properties in Top
(3.8) Property. $\left(\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right), i_{\mathrm{B}}^{\mathrm{A}(\mathrm{X})}: \mathrm{B} \in \operatorname{Fin} \mathrm{A}(\mathrm{X})\right)$ is a representation of $\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right)$ as the inverse limit of the system $\left(\mathrm{N}_{\mathrm{B}}^{\mathrm{A}}\left(\mathrm{X}, \mathrm{X}_{0}\right), i_{\mathrm{B}}^{\mathrm{A}}: \mathrm{B} \subset \mathrm{A} \in \operatorname{Fin} \mathrm{A}(\mathrm{X})\right)$ in the cubical category QP.
(3.9) Property. Let $g:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{Y}, \mathrm{Y}_{\mathbf{0}}\right)$ be a continuous map. Then $\mathrm{Q}(g): \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right) \rightarrow \mathrm{Q}\left(\mathrm{Y}, \mathrm{Y}_{0}\right)$ is the inverse limit morphism of morphisms $\mathrm{N}_{\mathrm{B}}^{\mathrm{A}} g\left(f^{-1}(\mathrm{~B}) \subset \mathrm{A} \in \operatorname{Fin} \mathrm{A}(\mathrm{X})\right.$ and $\left.\mathrm{B} \in \operatorname{Fin} \mathrm{A}(\mathrm{Y})\right)$ in the cubical category QP.

4. The natural transformation $\Phi: \mathrm{Ht} \rightarrow \mathrm{F} \circ \mathrm{Q}$

To each pair $G=\left(G_{-1}, G_{1}\right) \in A(X)$ we assign a continuous function $f_{\mathrm{G}}: \mathrm{X} \rightarrow \mathrm{I}$ such that

$$
\begin{equation*}
f_{\mathrm{G}} \mid \mathrm{X} \backslash \mathrm{G}_{\varepsilon}=-\varepsilon \quad \text { for } \quad \varepsilon= \pm \mathrm{I} \tag{4.I}
\end{equation*}
$$

We also define the continuous function $f=f^{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{QX} \subset \mathrm{I}^{\mathrm{A}(\mathrm{X})}$ as $f(x)=\left(f_{\mathrm{G}}(x)\right)_{\mathrm{G} \in \mathrm{A}} \quad$ i. e. $f={\underset{\mathrm{G} \in \mathrm{A}(\mathrm{X})}{ } f_{\mathrm{G}} .}$.

The following proposition shows that the mapping f is well defined. (4.2) Proposition. $f\left(\mathrm{X}, \mathrm{X}_{0}\right) \subset \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ i.e. $f(\mathrm{X}) \subset \mathrm{QX}$ and $f\left(\mathrm{X}_{0}\right) \subset \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0}$.

Proof. We will show that $f\left(\mathrm{X}_{0}\right) \subset \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0}$. Set $\mathrm{A} \in \mathrm{Fin} \mathrm{A}(\mathrm{X})$ and suppose that $x \in \mathrm{X}_{0}$. Note that if $f_{\mathrm{G}}(x) \neq-\varepsilon$ then $x \in \mathrm{G}_{\varepsilon}$.

Therefore

$$
\mathrm{X}_{0} \cap\left\{\pi_{\varepsilon}(\mathrm{G}):(f(x))_{\mathrm{G}} \neq-\varepsilon \quad \text { and } \quad \mathrm{G} \in \mathrm{~A}\right\} \neq \varnothing
$$

Hence (see (3.2)) $f(x) \in \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0}$. Thus $f\left(\mathrm{X}_{0}\right) \subset \mathrm{Q}_{\mathrm{X}}\left(\mathrm{X}_{0}\right)$. In particular $f(x) \subset Q_{\mathrm{x}}(\mathrm{X})=\mathrm{QX}$.

The following assertion is evident.
(4.3) Proposition. Let $f^{\prime}={\underset{G}{G} \in}^{\Delta_{\mathrm{A}}} f_{\mathrm{G}}^{\prime}: \mathrm{X} \rightarrow \mathrm{XCI}^{\mathrm{A}}$ by another mapping such that $f_{\mathrm{G}}^{\prime} \mid \mathrm{X} \backslash \mathrm{G}_{\varepsilon}=-\varepsilon$ for every $\mathrm{G} \in \mathrm{A}$ and $\varepsilon= \pm \mathrm{I}$. Then $f \simeq f^{\prime}:\left(\mathrm{X}, \mathrm{X}_{0}\right) \rightarrow \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ and we have a canonical homotopy $h:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \mathrm{I} \rightarrow \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right)$ given by the formula

$$
h(x, t)=(\mathrm{I}-t) f(x)+t f^{\prime}(x) \quad \text { for } t \in \mathrm{I} \text { and } x \in \mathrm{X} .
$$

Proof. Indeed, for $f_{t}={\underset{\mathrm{G}}{\mathrm{G}} \mathrm{A}}^{\Delta} f_{t, \mathrm{G}}$, given by $f_{t}(x)=h(x, t)$, $f_{t, \mathrm{G}} \mid \mathrm{X} \backslash \mathrm{G}_{\varepsilon}=\varepsilon(\mathrm{see}(4 \cdot \mathrm{I}))$.

Thus the homotopy class of $f:\left(\mathrm{X}, \mathrm{X}_{0}\right) \rightarrow \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ which satisfies (4.I), depends only on ($\mathrm{X}, \mathrm{X}_{0}$), and we can define $\Phi: H t \rightarrow F \circ Q$ by putting

$$
\Phi\left(\mathrm{X}, \mathrm{X}_{0}\right)=[f] .
$$

(4.4) Theorem. $\Phi: \mathrm{Ht} \rightarrow \mathrm{F} \circ \mathrm{Q}$ is a natural transformation.

Proof. Let $\varphi:\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{Y}, \mathrm{Y}_{\mathbf{0}}\right)$ be a continuous mapping and let $\Phi\left(\mathrm{Y}, \mathrm{Y}_{0}\right)=[g]$ for some $g=\underset{\mathrm{G} \in \mathrm{A}(\mathrm{Y})}{\Delta} g_{\mathrm{G}}$ such that (4.I) holds for every g_{G} and $G \in A(Y)$. Then let

$$
f_{\varphi^{-1}(\mathrm{G})}=g_{\mathrm{G}} \circ \varphi \quad \text { for every } \quad \mathrm{G} \in \mathrm{~A}(\mathrm{Y})
$$

and let f_{G} for $\mathrm{G} \in \mathrm{A}(\mathrm{X}) \backslash \varphi^{-1}(\mathrm{~A}(\mathrm{Y}))$, be a mapping such that (4.I) holds. Then for $f={\underset{\mathrm{G}}{\mathrm{G}} \mathrm{A}(\mathrm{X})}_{f_{\mathrm{G}}}$ we have $\Phi\left(\mathrm{X}, \mathrm{X}_{0}\right)=[f]$ and $g \circ \varphi=\left(\mathrm{F}_{0} \circ \mathrm{Q}\right)(\varphi) \circ f$. Thus $[g] \circ[\varphi]=(F \circ Q)(\varphi) \circ[f]$ and finally

$$
\Phi\left(\mathrm{Y}, \mathrm{Y}_{0}\right) \circ \mathrm{Ht}(\varphi)=(\mathrm{F} \circ \mathrm{Q})(\varphi) \circ \Phi\left(\mathrm{X}, \mathrm{X}_{0}\right) .
$$

5. The natural transformation $\Gamma_{0}: F_{0} \circ Q \mid C o m p ~ \rightarrow I_{\text {Comp }}$

For a compact space X we define the function g as $g=\Gamma_{0}(X): Q X \rightarrow X$.
Let $x=\left(x_{\mathrm{G}}\right)_{\mathrm{G} \in \mathrm{A}} \in \mathrm{QX}$ and let $\mathscr{F}(x)$ be the filter in the lattice $\mathrm{T}=\mathrm{T}(\mathrm{X})$ generated by the family

$$
\begin{equation*}
\mathrm{B}(x)=\left\{\pi_{\varepsilon}(\mathrm{G}): x_{\mathrm{G}} \neq-\varepsilon, \quad \mathrm{G} \in \mathrm{~A}(\mathrm{X})\right\} \tag{5.1}
\end{equation*}
$$

Thus, for every $G \in A(X)$, we have either $G_{-1} \in \mathscr{F}(x)$ or $\mathrm{G}_{1} \in \mathscr{F}(x)$. In other words, $\mathrm{G}_{-1} \in \mathfrak{F}(x)$ or $\mathrm{G}_{1} \in \mathfrak{F}(x)$ for every $\mathrm{G}_{-1}, \mathrm{G}_{1} \in \mathrm{~T}$ such that $\mathrm{G}_{-1} \cup \mathrm{G}_{1}=\mathrm{X}$. Thus, $\mathscr{\mathscr { F }}(x)$ has the unique limit in X . We define $g: \mathrm{QX} \rightarrow \mathrm{X}$ by the formula

$$
\begin{equation*}
g(x)=\lim \mathfrak{F}(x) . \tag{5.2}
\end{equation*}
$$

(5.3) Lemma. $g: \mathrm{QX} \rightarrow \mathrm{X}$ is a continuous mapping.

Let $x=\left(x_{\mathrm{G}}\right)_{\mathrm{G} \in \mathrm{A}} \in \mathrm{QX}$ and let V be a neighborhood of $g(x)$ in X . Let $\varphi: \mathrm{X} \rightarrow \mathrm{I}$ be a continuous mapping, such that $\varphi(g(x))=\mathrm{I}$ and $\varphi \mid \mathrm{X} \backslash \mathrm{V}=-\mathrm{I} . \quad$ Then for $\mathrm{G}_{-1}=\varphi^{-1}([-\mathrm{I} ; \mathrm{I} / 2))$ and $\mathrm{G}_{1}=\varphi^{-1}((-\mathrm{I} / 2 ; \mathrm{I}])$ we have that $\mathrm{G}=\left(\mathrm{G}_{-1}, \mathrm{G}_{1}\right) \in \mathrm{A}$ and $g(x) \notin \overline{\mathrm{G}}_{-1}$ and $\overline{\mathrm{G}}_{1} \subset \mathrm{~V}$. Thus $\mathrm{G}_{-1} \notin \mathfrak{F}(x)$ and $\mathrm{G}_{1} \in \mathscr{F}(x)$. The set $\mathrm{U}=\left\{y=\left(y_{\mathrm{H}}\right)_{\mathrm{H} \in \mathrm{A}} \in \mathrm{QX}: y_{\mathrm{G}}>-\mathrm{I}\right\}$ is a neighborhood of x in $Q X\left(x_{\mathrm{G}}=1\right)$ such that $g(\mathrm{U}) \subset \overline{\mathrm{G}}_{1} \subset \mathrm{~V}$. Q.E.D.
(5.4) Lemma. Let X_{0} be a compact subspace of X . Then $g\left(\mathrm{Q}_{\mathrm{X}}\left(\mathrm{X}_{0}\right)\right) \subset \mathrm{X}_{0}$.

Proof. Suppose $x=\left(x_{\mathrm{G}}\right)_{\mathrm{G} \in \mathrm{A}(\mathrm{X})} \in \mathrm{Q}_{\mathrm{X}}\left(\mathrm{X}_{0}\right)$. Then the family $\left\{\pi_{\varepsilon}(\mathrm{G}) \cap \mathrm{X}_{0}: \mathrm{G} \in \mathrm{A}(\mathrm{X})\right.$ and $\left.x_{\mathrm{G}} \neq \varepsilon\right\}$ has the finite intersection property. Therefore, $g(x)=\lim \mathscr{F}(x) \in \mathrm{X}_{0}$.

Using (4.4) we can consider g as a mapping $g: Q\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right)$ for every compact pair ($\mathrm{X}, \mathrm{X}_{\mathbf{0}}$). Let Comp be the category of compact pairs. We have thus obtained a transformation $\Gamma_{\mathbf{0}}: \mathrm{F}_{\mathbf{0}} \circ \mathrm{Q} \mid \mathrm{Comp} \rightarrow \mathrm{I}_{\mathrm{Comp}}$ such that $\Gamma_{0}\left(\mathrm{X}, \mathrm{X}_{0}\right)=g: \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \rightarrow\left(\mathrm{X}, \mathrm{X}_{0}\right)$.
(5.5) Theorem. $\Gamma_{0}: \mathrm{F}_{\mathbf{0}} \circ \mathrm{Q} \mid \mathrm{Comp} \rightarrow \mathrm{I}_{\mathrm{Comp}}$ is a natural transformation.

6. Φ and Γ as natural equivalences

In this section we will prove the basic theorem of this paper.
(6.1) Theorem. Let $\Gamma: \mathrm{F} \circ \mathrm{Q}|\mathrm{Comp} \rightarrow \mathrm{H}| \mathrm{Comp}$ be the natural transformation induced by Γ_{0} (see §.5) and let $\Phi \mid$ Comp : Ht \mid Comp \rightarrow F。Q \mid Comp be the restriction of Φ (see § 4). Then $\Phi \mid \operatorname{Comp}=\Gamma^{-1}$, and consequently Γ and $\Phi \mid \mathrm{C}$ are natural equivalences.

Proof. If $\left(\mathrm{X}, \mathrm{X}_{0}\right) \in \mathrm{C}$ and $[f]=\Phi\left(\mathrm{X}, \mathrm{X}_{0}\right)$ then

$$
\begin{equation*}
\Gamma_{0}\left(\mathrm{X}, \mathrm{X}_{0}\right) \circ f=\operatorname{Id}_{\left(\mathrm{X}, \mathrm{x}_{0}\right)}, \tag{6.2}
\end{equation*}
$$

and for $h(x, t)=(\mathrm{I}-t) x+t \cdot\left(f \circ \Gamma_{0}\left(\mathrm{X}, \mathrm{X}_{0}\right)\right)(x), x \in \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right), \quad t \in \mathrm{I}, \quad$ if

$$
\begin{equation*}
h\left(\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \times \mathrm{I}\right) \subseteq \mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{\mathbf{0}}\right) \tag{6.3}
\end{equation*}
$$

then

$$
\begin{equation*}
f \circ \Gamma_{0}\left(\mathrm{X}, \mathrm{X}_{0}\right) \underset{h}{\simeq} 1_{\mathrm{Q}\left(\mathrm{X}, \mathrm{X}_{0}\right)} . \tag{6.4}
\end{equation*}
$$

Thus it suffices to prove (6.3).
Let $x \in \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{0}$ and $\mathrm{o}<t<\mathrm{I}$ and let $g=\Gamma_{0}\left(\mathrm{X}, \mathrm{X}_{0}\right)$. Then (by (5.I))

$$
\mathrm{B}(h(x, t))=\mathrm{B}((\mathrm{I}-t) x+t \cdot(f \circ g)(x))=\mathrm{B}(x) \cup \mathrm{B}(f \circ g(x)) .
$$

Since the family $\left\{\mathrm{U} \cap \mathrm{X}_{0}: \mathrm{U} \in \mathrm{B}(x)\right\}$ has the finite intersection property,
 it follows that $\left\{\mathrm{U} \cap \mathrm{X}_{0}: \mathrm{U} \in \mathrm{B}(h(x, t))\right\}$ has the finite intersection property. Thus, $h(x, t) \in \mathrm{Q}_{\mathrm{X}} \mathrm{X}_{\mathbf{0}}$. In particular, for $\mathrm{X}=\mathrm{X}_{0}$ we have $h(x, t) \in \mathrm{QX}$.

[^0]: (*) Nella seduta del 20 febbraio 1971.

[^1]: (I) I.e. of sets of the form $f^{-1}(\mathrm{R} \backslash\{0\})$, where $f: \mathrm{X} \rightarrow \mathrm{R}$ is a continuous real-valued function.

