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Analisi funzionale. — On quasibounded mappings and nonlinear

Sunctional equations. Nota di ALroNso VIeNOLI ®, presentata *” dal
Socio S. SANSONE.

RIASSUNTO. — Si dimostra il seguente teorema: «Sia T :X —> X una applicazione
quasilimitata e addensante (vedi Introduction) di uno spazio di Banach in se stesso. Sia
T = lim sup T(x)/x <1, allora I’equazione y = x — T(x) ammette almeno una soluzione per

X
ogni y € X». Come corollari si ottengono alcuni risultati gid noti.
1. INTRODUCTION

Let T: X — Y be a continuous mapping from a Banach space X into
a Banach space Y. If the number

Tl =1 1T
TI=in e e
is finite then the mapping T is said to be guasibounded and | T | is called the
quasinorm of T. (See A. Granas [1]). Clearly a continuous linear mapping
L:X —Y is quasibounded and |L |=| L|, where ||L| is the norm of L.
In [1] Granas proved the following theorem

THEOREM A. Let T:X =X be a quasibounded completely continuous
mapping from a Banach space X into itself. Let |T| <1, then the equation
vy =x—T(x) has at least a solution for each y € X.

The aim of the present paper is to give an extension of Theorem A to a
more general class of mappings. As corollaries we give some known results
obtained previously by other authors.

For this purpose we will use the following terminology.

Let ACX be a bounded set of a metric space (X, d). By « (A) we denote
the infimum of all € > o such that A admits a finite covering consisting of
subsets with diameter less than €. (See C. Kuratowski [2]). Clearly a (A)=o0
if and only if A is precompact.

Let T: X — X be a continuous mapping of a metric space (X, d) into
itself. If for any bounded set ACX such that «a (A) > o we have

« (T(A)) <« (A),
then the mapping T is said to be densifying (see [3]).
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Note that contractive mappings (.e. d(T (x),T () < &d(x,y),
o<k<i1, for all x,y€X) and completely continuous mappings are
densifying; also sums of contractive and completely continuous mappings
defined on Banach spaces are densifying.

The following theorem regarding densifying mappings was proved in [4].

THEOREM B. Let T : Q — Q be a densifying mapping defined on a bounded
convex and closed subset Q of a Banack space X. Then T /zas at least one fixed
point O,

2. SOLVABILITY OF FUNCTIONAL EQUATIONS

The main result of this paper is the following

THEOREM 1. Let T :X — X be a quasibounded densifying mapping from
a Banach space X into itself. Let |'T | < 1, then the equation y = x — T(x)
has at least ome solution for each y € X.

Proof. Given any y~ € X we have to prove that y~ =ax~—T () for
some x~ € X. Let G=y~—T. It is readily seen that G is a densifying
mapping. Consider the following family of balls with center in y*

QW) ={reX:lx—y <k} , k=1,2,--

We want to show that for some integer £’ > o the mapping G maps Q (&)
into itself. Assume the contrary. Then for any positive integer £ there exists
an element x, such that ||x,—y~ || < £ and

IG @) —y || >4

But
|G (x) — v~ || = | T(xp) H:
hence
IT )] P
AN

on the other hand
el <y~ |l + £,

from which it follows

I>[T]—l1m pmzlmsup = lim sup —F— =
[l || =00 J Xy I k—>00 E3 “ E—>00 ly~i+4

(1) We would like to point out that a similar theorem was proved by Sadovskij [5].
But he uses a different definition of the number «, so strictly speaking the class of densifying
mappings introduced in [3] does coincide with the class of mappings introduced by Sadov-
skij. Also, should be remarked that the proof of our theorem is completely different from
the one given by Sadovskij.
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This contradiction shows that for some 2 >o0, G:Q (#) - Q (#). Hence
by Theorem B the mapping G has at least one fixed point, say x~ € Q(%&).
Then G(x*)=2~=49~ +T ("), iie. y» =2~ —T (x~), which completes
the proof.

From Theorem 1 follows

COROLLARY 1. Let T:X — X be a quasibounded densifying mapping
Jrom a Banach space X into ttself. Let the quasinorm of T satisfy the inequality
IMN|T| <1, where \ is a real number suck that |\| < 1. Then the equation
vy =x—NL (x) has at least one solution for eack y € X.

COROLLARY 2. Let T: X — X be a densifying mapping from a Banach
space X into dtself. Let || T (x)|| =o(||x]]) as ||| —oco. Let N be a real
number such that |\| < 1. Then the equation y = x — AT (x) has at least
one solution for each y € X. '

In the above corollaries the condition | A | < 1 is required in order that
the mapping AT be densifying.

If the mapping T is assumed to be completely continuous both corolla-
ries can be proved without the assumption |A| < 1. (See Granas [1] for
Corollary 1 and Dubrovskij [6] for Corollary 2).

Since a sum of a contractive mapping (or more generally a densifying
mapping) and a completely continuous one is a den51fy1ng mapping, from
Theorem 1 we get the following.

COROLLARY 3. Let F:X — X be a quasibounded densifying mapping
Sfrom ‘a Banach space X into itself with quasinorm |F| <k,o0o <k <1,
and let G:X =X be completely continuous with quasinorm |G| <1— k.
Then the equation y = x — F(x) — G(x) has at least one solution for each y € X.

Remark. In particular if in Corollary 3 the mapping F is assumed to
be contractive with constant £, then F is densifying and satisfies the condition:
| F| <4 Indeed

F (@]
1x]

[F@#x)—F ()]
Il

HF(O) I

IF )]
t o =AT

Kl ’
hence |F| < 4. Hence as a par’ucular case of Corollary 3 (when F is a con-
traction with' constant £) we obtain a result of Nashed and Wong [7].

<

Vx € X,

COROLLARY 4. Let F:X —X be a quasitbounded densifying mapping
from a Banach space X into itself with quasinorm |F|<k,o<b<i1, and
let the mapping G : X — X be quasibounded and completely continuous. Let h
be a real number such that |\||G|<1—=4k. Then the equation y = x —
— F(x) —AG (%) kas at least onme solution for each y € X.

Nussbaum [8] showed that a strict semicontraction is densifying, hence
all our results hold for that class of mappings. We recall that a mapping
T:X X is said to be strict semicontractive (see Browder [9]) if there exists
a continuous mapping S: XXX — X such that T () = S (x, x) for all x € X,

HS<x’Z>MS(J’JZ>Hg'é”x_y” , 0<Ak<I; x,y,2€X,
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and the mapping x —S (- , x) is completely continuous from X to the space
of mappings from X into itself with the uniform metric.

We also remark that an interesting surjectivity theorem involving qua-
sibounded P-compact mappings was given by Petryshyn [10].

A geometric application of Theorem 1 is given in [11].
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