ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

LAMBERTO CATTABRIGA

Sulle soluzioni in tutto lo spazio di certe equazioni a derivate parziali

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **50** (1971), n.2, p. 108–113. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1971_8_50_2_108_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni differenziali. — Sulle soluzioni in tutto lo spazio di certe equazioni a derivate parziali (*). Nota di Lamberto Cattabriga, presentata (**) dal Corrisp. G. Cimmino.

SUMMARY. — Regularity and existence of solutions in the whole *n*-dimensional euclidean space of a class of partial differential equations are studied.

Presentiamo qui alcuni risultati riguardanti le soluzioni in tutto lo spazio euclideo reale n-dimensionale E^n , $n \ge 2$, di equazioni a derivate parziali a coefficienti complessi costanti di un tipo più generale di quelli considerati nel n. 7 di [2].

Indichiamo con S^n , $n \ge 2$, lo spazio vettoriale n-dimensionale avente per elementi i multi-indici $\mathbf{s} = (s_1, \dots, s_n)$ a coordinate s_j , $j = 1, \dots, n$, reali. Con \mathbf{e} indichiamo l'elemento di S^n avente tutte le coordinate eguali ad uno e con \mathbf{e}^j l'elemento di S^n con $\mathbf{e}^j_n = 0$ per $n \ne j$ ed $n \ne j$ el $n \ne j$ es $n \ne j$ ha coordinate intere non negative porremo $n \ge n$ $n \ne j$ es $n \ne j$ $n \ne j$ es $n \ne j$

Sia P (D) = $\Sigma_s a_s D^s$ un polinomio differenziale a coefficienti complessi costanti. Con la denominazione di [5] e [7] chiameremo poliedro caratteristico di P (D) l'inviluppo convesso in S" dell'insieme $\{s \in S^n ; a_s \neq 0\} \cup \{o\}$. Supporremo che P (D) soddisfi alla

CONDIZIONE K.

i) il poliedro caratteristico \mathbf{P} di $\mathbf{P}(\mathbf{D})$ sia tale che $\forall j = 1, \dots, n$ è $m_i = \max \{ \rho \ge 0 ; \rho \mathbf{e}^j \in \mathbf{P} \} > 0$,

ii) esistano due costanti C > 0 ed R > 0 tali che

$$\mid P\left(\xi\right) \mid \geq C \sum_{2}^{N\left(\mathbf{P}\right)} \mid \xi^{\mathbf{s}^{l}} \mid \ ^{(1)} \quad \ \forall \xi \in E^{n}, \mid \xi \mid > R$$

ove \mathbf{s}^l , l=2, \cdots , $N(\mathbf{P})$, indicano i vertici di \mathbf{P} diversi dall'origine \mathbf{o} di S^n .

Uno studio dei polinomi differenziali soddisfacenti alla K è stato iniziato da L. R. Volevič–S. G. Gindikin [7]. I risultati che qui esponiamo si ottengono utilizzando quanto provato in [1] e [2]. Una parte di essi costituisce una estensione dei risultati del n. 7 di [2]. Salvo alcune varianti esplicitamente indicate, le notazioni qui usate sono quelle di [1] e [2].

- (*) Lavoro eseguito con contributo del CNR.
- (**) Nella seduta del 20 febbraio 1971.
- (I) Se $\mathbf{s} \in S^n$ si pone $|\xi^{\mathbf{s}}| = \prod_{j=1}^n |\xi_j|^{s_j}$.

I. Si vede facilmente che le proposizioni provate nel n. I di [I], in particolare il lemma I.6 da cui esse dipendono, continuano a sussistere se con $\mathfrak{D}_{L_p,\alpha}$, $I \leq p < \infty$, $\alpha \geq 0$, si intende, anzichè lo spazio là così indicato, lo spazio vettoriale costituito da tutte le funzioni ζ a valori complessi indefinitamente differenziabili in E^n e tali che

$$\|\partial^{\mathbf{r}} \zeta\|_{L_{p}(\mathbf{E}^{n}),\alpha} = \left\{ \int_{\mathbf{E}^{n}} |\partial^{\mathbf{r}} \zeta|^{p} \prod_{1}^{n} (\mathbf{I} + |x_{j}|)^{\alpha p} dx \right\}^{1/p} < \infty,$$

per ogni multi-indice r di interi non negativi. In tale spazio si considera la topologia definita dalla famiglia di seminorme: $\sup_{|r| \leq m} \| \partial^r \zeta \|_{L_p(\mathbb{E}^n),\alpha}$, $m = 0,1,\cdots$. Lo spazio $\mathfrak{D}_{L_p,\alpha}$ così definito è strettamente incluso nell'omonimo spazio di [1]. Porremo

$$\mathfrak{I} = \bigcup_{1$$

ove $\mathfrak{D}'_{L_p,\alpha}$ indica il duale di $\mathfrak{D}_{L_p,\alpha}$, p'=p/(p-1). Gli elementi di $\mathfrak{D}'_{L_p,\alpha}$ sono le distribuzioni che possono scriversi come somme finite di derivate di prodotti di funzioni di p-esima potenza integrabile su E^n per $\prod_{j=1}^n (1+|x_j|)^{\alpha}$.

Tutte le proposizioni di [1] e [2] continuano a sussistere inalterate con questa nuova definizione dello spazio $\mathfrak N$, in particolare il lemma 1.9 ed il teorema 1.1 da cui le altre dipendono. Nel seguito $\mathfrak N$ indicherà sempre lo spazio ora definito; $L_p=L_p\left(E^n\right)$, $1\leq p<\infty$ indicherà naturalmente lo spazio delle classi delle funzioni a valori complessi aventi p-esima potenza integrabile su E^n , con la norma

$$||f||_{\mathbf{L}_{p}} = \left\{ \int_{\mathbf{E}^{n}} |f(x)|^{p} dx \right\}^{1/p}.$$

2. Definizione 2.1. Sia \mathfrak{D}_0^n l'insieme dei poliedri convessi \mathbf{P} di S^n tali che

- a) $\mathbf{P} \subset S_+^n = \{ \mathbf{s} \in S^n ; s_j \geq 0, j = 1, \dots, n \};$
- b) l'origine o di S^n appartiene a P;
- c) $\forall j = 1, \dots, n \ \hat{e} \ m_j = \max \{ \rho \geq 0 ; \rho e^j \in \mathbf{P} \} > 0.$

Si vede facilmente che se $\mathbf{P} \in \mathcal{S}_0^n$ l'origine \mathbf{o} di \mathbf{S}^n ed i punti $m_j \mathbf{e}^j$ sono fra i vertici \mathbf{s}^l , $l = 1, \dots, N$ (\mathbf{P}), di \mathbf{P} . Porremo sempre $\mathbf{s}^1 = \mathbf{o}$. \mathcal{S}_0^n contiene l'insieme dei poliedri convessi di \mathbf{S}^n indicato con \mathcal{S}^n in [1] e [2]. Se $\mathbf{P} \in \mathcal{S}_0^n$

è
$$\left\{ \mathbf{s} \in \mathbb{S}_{+}^{n} : \sum_{1}^{n} m_{j}^{-1} s_{j} \leq \mathbf{I} \right\} \subset \mathbf{P}$$
. In accordo con [I] porremo

$$\mathbf{P}^{+} = \left\{ \mathbf{s} \in \mathbf{P} \; ; \; \sum_{j=1}^{n} m_{j}^{-1} s_{j} \geq 1 \; \right\}$$

ed indicheremo con $\dot{\mathbf{P}}^+$ l'insieme degli $\mathbf{s} \in \mathbf{P}$ che appartengono ad almeno uno degli iperpiani estremi di appoggio di \mathbf{P} diversi dagli iperpiani coordinati. Si vede facilmente che \mathbf{P}^+ coincide con l'inviluppo convesso dei vertici di \mathbf{P} diversi dall'origine.

LEMMA 2.1. Sia $\mathbf{P} \in \mathcal{S}_0^n$ ed \mathbf{s}^l , $l = 1, \dots, N(\mathbf{P})$, i suoi vertici $(\mathbf{s}^1 = \mathbf{o})$; allora

i) se
$$\mathbf{s} \in \mathbf{P}$$
 è
$$\left| \xi^{\mathbf{s}} \right| \leq \sum_{l=l}^{N(\mathbf{P})} \left| \xi^{\mathbf{s}^l} \right| \quad , \quad \xi \in \mathbf{E}^n \, ;$$

ii) se
$$s \in \mathbf{P}^+$$
 è
$$|\xi^s| \leq \sum_{j=1}^{N(\mathbf{P})} |\xi^{s^j}| \quad , \quad \xi \in \mathrm{E}^n \; ;$$

iii) se
$$\mathbf{s} \in \mathbf{P} \setminus \dot{\mathbf{P}}^+ \grave{e}$$

$$\lim_{|\xi| \to \infty} |\xi^{\mathbf{s}}| \left[\sum_{l=1}^{N(\mathbf{P})} |\xi^{\mathbf{s}l}| \right]^{-1} = 0;$$

iv) se $\mathbf{s} \in S_n^+ \setminus \mathbf{P}$ esiste un $\mathbf{a} \in S^n$ con almeno una coordinata positiva tale che posto $\xi = (t^{a_1}, \dots, t^{a_n})$ è

$$\lim_{|t| \to \infty} |\xi^{s}| \left[\sum_{l=1}^{N(\mathbf{P})} |\xi^{sl}| \right]^{-1} = +\infty;$$

$$\text{v) se } \mathbf{s} \in \mathbf{P} \setminus \mathbf{P}^{+} \text{ posto } \xi = (t^{m_{1}^{-1}}, \dots, t^{m_{n}^{-1}}) \hat{\epsilon}$$

$$\lim_{|t| \to 0} |\xi^{s}| \left[\sum_{l=1}^{N(\mathbf{P})} |\xi^{sl}| \right]^{-1} = +\infty.$$

Dimostrazione. Le i) e ii) sono semplici conseguenze della convessità di \mathbf{P} e \mathbf{P}^+ (2), mentre la v) è immediata. Per provare iii) (3) e iv) osserviamo che come conseguenza di a), b), c) si può scrivere

$$\mathbf{P} = \bigcap_{\mathbf{a} \in \beta(\mathbf{P})} \left\{ \mathbf{s} \in \mathbf{S}_{+}^{n} ; \sum_{1}^{n} a_{j} s_{j} \leq \mathbf{I} \right\},\,$$

ove $\mathfrak{A}(\mathbf{P})$ è un insieme finito (e non vuoto) di Sⁿ tale che ogni suo elemento ha almeno una coordinata positiva. Essendo \mathbf{P} limitato in Sⁿ è inoltre $\max_{\mathbf{a} \in \mathfrak{A}(\mathbf{P})} \sum_{1}^{n} a_j s_j > 0$ per ogni $\mathbf{s} \in \mathbf{P} \setminus \{\mathbf{o}\}$. Se $\mathbf{s} \in \mathbf{P} \setminus \dot{\mathbf{P}}^+$, $\mathbf{s} \neq \mathbf{o}$, è $\max_{\mathbf{a} \in \mathfrak{A}(\mathbf{P})} \sum_{1}^{n} a_j s_j = \rho < 1$ e quindi $\rho^{-1} \mathbf{s} \in \dot{\mathbf{P}}^+$. Per ii) è quindi

$$\mid \xi^{\mathbf{s}} \mid \leq \left(\sum_{2}^{N(\mathbf{P})} \mid \xi^{\mathbf{s}'} \mid \right)^{\varrho} \, \forall \xi \in \mathbb{E}^n$$
 ,

- (2) Si veda per esempio [5] od il lemma 3.1 di [1].
- (3) Si veda anche [7], lemma 5.

da cui segue subito iii) poichè per c) è $\lim_{|\xi| \to +\infty} \sum_{j=1}^{N(\mathbf{P})} |\xi^{s^j}| = +\infty$. Se infine $s \in S_+^n \setminus \mathbf{P}$ è $\sum_{j=1}^n a_j s_j > 1$ per almeno un $a \in \mathfrak{A}(\mathbf{P})$. Scelto uno di tali a e

posto
$$\xi = (t^{a_1}, \dots, t^{a_n})$$
 avremo $|\xi^s| = |t|^{\sum_{j=1}^n a_j s_j}$ e $|\xi^{s^l}| = |t|^{\sum_{j=1}^n a_j s_j^l} \le |t|$ per $|t| \ge 1$, $l = 2$, ..., $N(\mathbf{P})$, poichè è sempre $\sum_{j=1}^n a_j s_j^l \le 1$. Ciò prova iv).

3. Come il lemma 5.3 di [2] si prova il

LEMMA 3.1. Sia $P(\xi) = \Sigma_s a_s \xi^s$ un polinomio a coefficienti complessi tale che $\{s \in S^n : a_s \neq 0\} \subset P \in S_0^n$ e che soddisfi alla K ii); sia $\zeta \in C_0^\infty$ (E^n) , $0 \le \zeta(\xi) \le 1$, $\zeta(\xi) = 1$ per $|\xi| \le M$, M > R, $\zeta(\xi) = 0$ per $|\xi| > 2M$, allora la funzione

$$[I - \zeta(\xi)] [P(\xi)]^{-1}$$
, $\xi \in E^n$,

è un moltiplicatore nello spazio δ delle funzioni indefinitamente differenziabili in E^n ed a decrescenza rapida all'infinito ed un moltiplicatore di tipo (p,p), 1 .

OSSERVAZIONE 3.1. Affinchè un polinomio $P(\xi)$ soddisfi alle ipotesi del lemma 3.1 è necessario che l'inviluppo convesso \mathbf{R} in S^n dell'insieme $\{s \in S^n; a_s \neq 0\} \cup \{o\}$ coincida con \mathbf{P} , ossia che $a_{s^l} \neq 0$ per ogni $l = 2, \dots, N(\mathbf{P})$.

Dimostrazione. Essendo i punti $m_j e^j$, $j = 1, \dots, n$, vertici di \mathbf{P} , i termini $|\xi_j|^{m_j}$ figurano a secondo membro della maggiorazione a cui deve soddisfare $P(\xi)$. Fra gli s tali che $a_s \neq 0$ dovranno quindi esservi gli $m_j e^j$, $j = 1, \dots, n$. È dunque $\mathbf{R} \in \mathcal{S}_0^n$. Se \mathbf{R} non coincidesse con \mathbf{P} vi sarebbe almeno un vertice di \mathbf{P} , sia s^k , diverso dall'origine e non appartenente ad \mathbf{R} . Indicati con r^k , $k = 1, \dots, N(\mathbf{R})$, i vertici di \mathbf{R} per la i) del lemma 2.1 applicata ad \mathbf{R} sarebbe

$$\sum_{2}^{\mathrm{N}(\mathbf{P})} \mid \xi^{s'} \mid \mid \mathrm{P}\left(\xi\right) \mid^{-1} \geq c \mid \xi^{s'_0} \mid \left[\sum_{1=k}^{\mathrm{N}(\mathbf{R})} \mid \xi^{r^k} \mid \right]^{-1} , \quad \mid \xi \mid > \mathrm{R} ,$$

ove c è una costante positiva, ma il secondo membro non può mantenersi limitato per $|\xi| > R$ per la iv) del lemma 2.1 applicata ad **R**.

LEMMA 3.2. Se $P(\xi) = \sum_s a_s \xi^s$ è un polinomio a coefficienti complessi tale che $\{s \in S^n : a_s \neq 0\} \subset \mathbf{P}^+$, $\mathbf{P} \in \mathcal{S}_0^n$ e che soddisfi alla K ii) con R = 0, allora qualunque sia $\mathbf{r} \in \mathbf{P}$ la funzione $\xi^{\mathbf{r}} [P(\xi)]^{-1}$ (4) è un moltiplicatore nello spazio $\Psi^{(5)}$ ed un moltiplicatore di tipo (p,q) per $\mathbf{I} , <math>q = p/(\mathbf{I} - p\eta)$ qualunque sia $\eta \in [0, p^{-1}]$ tale che $\mathbf{r} + \eta \mathbf{e} \in \mathbf{P}^+$.

(4) Per
$$\mathbf{r} \in \mathbb{S}^n$$
 si pone $\xi^{\mathbf{r}} = \prod_{j=1}^n \xi_j^{r_j}$, $\xi_j^{r_j} = \begin{cases} \xi_j^{r_j} & \text{se } \xi_j \ge 0 \\ e^{-i\pi r_j} |\xi_j|^{r_j} & \text{se } \xi_j < 0 \end{cases}$.

(5) Definizione e proprietà di questo spazio, introdotto da P. I. Lizorkin [3], sono anche esposte nei nn. 1 e 2 di [1].

La dimostrazione di questo lemma, fondata su un teorema di P. I. Lizorkin [4] si conduce come quella del lemma 5.2 di [2], tenendo conto che se $r + \eta e \in \mathbf{P}^+$

$$\left| \left| \xi^{r+\eta e} \right| \mid P(\xi) \right|^{-1} \leq C^{-1} \left| \left| \xi^{r+\eta e} \right| \left| \sum_{j=1}^{N(\mathbf{P})} \left| \xi^{s^{j}} \right| \right|^{-1} \leq C^{-1}, \quad \xi \in \mathbb{E}^{n} \setminus \{0\},$$

per la ii) del lemma 2.1.

Osservazione 3.2. Affinché esistano dei numeri η soddisfacenti alle condizioni richieste dal lemma 3.2 occorre e basta che sia

(3.1)
$$\left(\mathbf{I} - \sum_{1}^{n} m_{j}^{-1} r_{j} \right) \left(\sum_{1}^{n} m_{j}^{-1} \right)^{-1} < p^{-1}.$$

4. Se P(D) è un polinomio differenziale soddisfacente alla K il suo poliedro caratteristico \mathbf{P} appartiene a \mathcal{S}_0^n . Dalla iii) del lemma 2.1 segue allora subito il

Lemma 4.1 ⁽⁶⁾. Un polinomio differenziale P(D) a coefficienti complessi costanti soddisfacente alla K i) soddisfa alla K ii) se e soltanto se esistono due costanti positive $C_1>0$ ed $R_1\geq 0$ tali che

$$\left| \sum_{\boldsymbol{s} \in \dot{\mathbf{P}}^+} a_{\boldsymbol{s}} \xi^{\boldsymbol{s}} \right| \ge C_1 \sum_{l}^{N(\mathbf{P})} |\xi^{\boldsymbol{s}^l}| \qquad \forall \xi \in \mathbf{E}^n, |\xi| > R_1.$$

Il polinomio $P_0(\xi) = \sum_{s \in \dot{\mathbf{P}}^+} a_s \, \xi^s$ è chiamato in [7] parte principale del polinomio $P(\xi)$. Alla K ii') con $R_1 = o$ soddisfano tutti i polinomi quasi ellittici. Ciò accade, come si vede con semplici esempi, anche per polinomi non quasi ellittici.

TEOREMA 4.1. Se P (D) è un polinomio differenziale a coefficienti complessi costanti soddisfacente alla K, allora da $u \in \mathbb{S}'$, P (D) $u \in \mathfrak{D}_{L_p}$ (7), $I , segue <math>u \in \mathbb{C}^{\infty}$ (Eⁿ).

Dimostrazione. Indicate con \mathcal{F} ed \mathcal{F}^{-1} la trasformazione di Fourier e la sua inversa, nello spazio \mathcal{S}' delle distribuzioni temperate è

$$\mathbf{u} = \mathbf{F}^{-1} \left(\left(\mathbf{I} - \mathbf{\zeta} \right) \mathbf{F} \mathbf{u} \right) + \mathbf{F}^{-1} \left(\mathbf{\zeta} \, \mathbf{F} \mathbf{u} \right) = \mathbf{u}_1 + \mathbf{u}_2$$

ove ζ è la funzione così indicata nel lemma 3.1. Per ogni multi-indice r di interi non negativi è poi $\mathscr{F}(D^r u_1) = (\mathbf{I} - \zeta) \ [P(\xi)]^{-1} \mathscr{F}(D^r P(D) u)$ onde, per il lemma 3.1, $D^r u_1 \in \mathcal{L}_p$. Ne segue che $u_1 \in \mathfrak{D}_{\mathcal{L}_p}$. Ciò prova il teorema poichè $u_2 \in \mathscr{C}^{\infty}(E^n)$.

⁽⁶⁾ Cfr. [7] teorema 2.

⁽⁷⁾ $\mathfrak{D}_{L_{\not p}}$ indica qui lo spazio $\mathfrak{D}_{L_{\not p},\alpha}$ del n. 1 quando $\alpha=0.$

TEOREMA 4.2. Sia P (D) un polinomio differenziale a coefficienti complessi costanti soddisfacente alla K con R = 0 e con $\{s: a_s = 0\} \subset \mathbf{P}^+$ ed $\mathbf{r} \in \mathbf{P}$ soddisfi alla (3.1), allora per ogni $u \in \mathfrak{N}$ tale che $P(D)u \in L_p$, $1 , è <math>D^ru \in L_q$ e

con c costante indipendente da u, per ogni $q = p/(1 - p\eta)$, con

$$\eta \in \left[\left(\mathbf{I} - \sum_{1}^{n} m_{j}^{-1} r_{j} \right) \left(\sum_{1}^{n} m_{j}^{-1} \right)^{-1}, \min_{\mathbf{a} \in \mathcal{Q}(\mathbf{P})} \left(\mathbf{I} - \sum_{1}^{n} a_{j} r_{j} \right) \middle/ \max_{\mathbf{a} \in \mathcal{Q}(\mathbf{P})} \sum_{1}^{n} a_{j} \right] \cap [0, p^{-1}[$$

Questo teorema si prova utilizzando il lemma 3.2 ed il teorema 2.2 di [1].

TEOREMA 4.3. P(D) soddisfi alla ipotesi del teorema 4.2 e sia $\sum_{1}^{n} m_{j}^{-1} > p$, allora se $f \in L_{p}$ esiste una ed una sola $u \in L_{q}$, $q = p/(1-p\eta)$, $\eta \in \left[\left(\sum_{1}^{n} m_{j}^{-1}\right)^{-1}\right]$, $\left(\max_{a \in \mathcal{Q}(\mathbb{P})} \sum_{1}^{n} a_{j}\right)^{-1} \cap [0, p^{-1}[$ soluzione della equazione P(D)u = f in E^{n} e per essa valgono le (4.1).

Dimostrazione. Il lemma 3.2 assicura che esiste una ed una sola $u \in L_q$, con i q indicati qui sopra, tale che

$$\langle f, \mathcal{F}^{-1}([P(\xi)]^{-1} \bar{\mathcal{F}} \varphi) \rangle = \langle u, \varphi \rangle \quad \forall \varphi \in \mathcal{S},$$

onde
$$\langle P(D) u, \varphi \rangle = \langle u, \mathfrak{F}^{-1}(P(\xi) \mathfrak{F} \varphi) \rangle = \langle f, \varphi \rangle$$
 per ogni $\varphi \in \mathfrak{S}$.

TEOREMA 4.4. P(D) soddisfi alla ipotesi K con R = 0, allora se $u \in \mathfrak{N}$ e P(D) u = 0 è u = 0 in E^n .

Dimostrazione. Nella ipotesi indicata $[P(\xi)]^{-1}$ è infatti un moltiplicatore in Ψ onde con le notazioni di [I]

$$\left\langle \textit{\textit{u}}\;\text{,}\;\phi\right\rangle = \left\langle P\left(D\right)\textit{\textit{u}}\;\text{,}\; \mathfrak{F}^{-1}\left([P\left(\xi\right)]^{-1}\,\mathfrak{F}\phi\right)\right\rangle = o \qquad \forall \phi \in \Phi.$$

Il teorema segue allora dal teorema 1.1 di [1] e dal teorema 4.1.

Nel caso in cui $P(D) = P_0(D)$ sia quasi ellittico, un risultato del tipo del teorema 4.3 si trova in [6].

BIBLIOGRAFIA

- [1] CATTABRIGA'L., Moltiplicatori di Fourier e teoremi di immersione per certi spazi funzionali, «Annali Sc. Normale Sup. di Pisa », 24 (1970).
- [2] CATTABRIGA L., Moltiplicatori di Fourier e teoremi di immersione per certi spazi funzionali, II, in corso di stampa su «Annali Sc. Normale Sup. di Pisa».
- [3] LIZORKIN P. I., Differenziazione generalizzata di Liouville e spazi funzionali $L_p^r(E^n)$. Teoremi di immersione, «Matem. Sb.», 60 (1963).
- [4] LIZORKIN P. I., Sui moltiplicatori dell'integrale di Fourier negli spazi Lp, v, «Trudy Matem. Inst. Akad. Nauk SSSR », 89 (1967).
- [5] MIHAILOV V. P., Sul comportamento all'infinito di una classe di polinomi, «Trudy Matem. Inst. Akad. Nauk SSSR », 91 (1967).
- [6] USPENSKIĬ \$. V., Sulla limitatezza (sommabilità) delle soluzioni di una classe di equazioni ipoellittiche in regioni non limitate, « Doklady Akad. Nausk SSSR », 187 (1969).
- [7] VOLEVIČ L. R. e GINDIKIN S. G., Su una classe di polinomi ipoellittici, «Matem. Sb.», 75 (1968).