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Matematica. — Maximal monotonicity and m-accretivity of
A+ B. Nota di Bruce CaLverr ®, presentata ? dal Corrisp.
G. STAMPACCHIA.

RIASSUNTO. — Si danno condizioni su due operatori A e B entrambi massimali mono-
toni (rispettivamente ms—accretivi) affinché A 4 B sia massimale monotono (m—accretivo).
L’ipotesi usuale che A sia limitato rispetto a B ¢ sostituita dalla condizione pitt debole che
A e B «puntino nella stessa direzione ». Quando uno degli operatori ¢ il subgradiente di una
funzione convessa si ottengono risultati pilt generali.

Let X be a Banach space over the reals R with dual X*. The value
of #* € X* at x € X will be denoted by either (+*,x) or (x,x*). A subset A
of X X X" is called monotone if for [#,2*] and [«,#*] in A we have

(" —u,x—wu)y>o0.

A monotone set is maximal if it is not properly contained in another monotone
set. Equivalently we regard A as a function from X to 2 (X™), subsets of X*.
Let A be a subset of X x X*

One defines Ax = {¢*:[x,2] €A}, A™1* = {x:5* € Ax}, D(A) =
={r:Axr94=0},R(A) = U{Ax:x in X}, for « in R, (¢A)x = {ay*:
in Ax}, A+Byxr=0{y" +2:5" in Ax,7* in Bz} forB X—>P(X)
If C is a nonempty subset of X or X*, one defines |C| =inf {||x||:x€C}.

If A is a subset of X X X, or equivalently a function from X to P (X),
one defines Ax, A"!, D (A), R (A),2A , A 4+ B similarly. Then A is accre-
tive if for all A>o (I +2AA)"! is nonexpansive, i.e. for [x, y] and [«, 2]
in A,

G +2) — (@ + M) || = [l —u|.

A is m-accretive if also R (I + M) = X for A >o0. Conditions of relative
boundedness have been given for the sum A -+ B of two nonlinear maximal
monotone [3, Th 2.3] or m-accretive [7, Th 9.22], [11, Th 10.2], [12, Th 4.2]
operators to have the same property. The idea of this paper is that Ax and Bx
should point in the same direction for x in D (A)n D (B). In other words,
just as monotonicity and accretivity are directional rather than boundedness
properties, perturbation theorems for monotone and accretive operators may
be given under directional hypotheses. We suppose f: X — (— oo, o] is
convex, not identically oo, and lower semicontinuous. Then 3f: X — P (X b
the subdifferential of £, is defined by w* € 3f () iff for all ¥ in X

F@) =@y —2x) +f(x).
(*) Durante lo svolgimento di questo lavoro, l'autore ha usufruito di una borsa di

studio presso I'Istituto per le Applicazioni del Calcolo del C.N.R., Roma.
(**) Nella seduta del 12 dicembre 1970.



358 Lincei — Rend. Sc. fis. mat. e nat..— Vol. XLIX - dicembre 1970 [180]

Then, [14], 3f is maximal monotone. Browder [8] asks for conditions on maxi-
mal monotone A for A + 3f to be maximal monotone. These are given in
Theorem 2.

The subdifferential of f(x) = ||x|?/2 is denoted by J, and called the
duality map. Similar results to this paper would arise if we took f to be other

functions of the norm as given in e.g. [6]. We recall the following theorem
of Browder [5, 6].

Let X be a reflexive Banach space with X, X* strictly convex. Let
A:X — P(X") be monotone. Then A is maximal monotone iff R(J+A)=X".
We recall the following theorem of Brezis-Crandall-Pazy [3].

Let X be a reflexive Banach space with X, X* strictly convex. Let
A:X P (X" and B: X - P (X" be maximal monotone. By Browder’s
theorem, given A >0, z in X, there exists a unique [z, ,21] €A with
J (2. —2) + 2z = 0. Defining A, : X — X* by 2} = A, (2), by [3] and [5]
B -+ A, is maximal monotone, so that by Browder’s theorem, given f* in X*
there exists a unique x in X such that

(1) Jar + Ay x5, + By af".
Then f* € R(J + A + B) iff |Ay 2| is bounded as A —o.

THEOREM 1: Let X be a reflexive Banach space with X , X strictly convex.
Suppose A and B from X to P(X*) are both maximal monotone. Suppose

(2) I +2J"TA'D@B)CD®B) for r>o.

Suppose k(r), c(r) and d (r) are continuous functions of », k(r) < 1 for every
7, 72d (r) — oo when r — oo such that for x in D (B)N D (A) and x* in Ax
there exists y* in Bx such that

3) OGS TP = — &I P —c (12l 2 (=)
Then A + B : X — P (X% is maximal monotone.

Proof: Tt follows from (2) that there exists £ in D (A) N D (B), and lett-
ing A(x)=A(x+%),B ) =B(+% we have 0€D (A)nD (B). Fur-
thermore (2) and (3) hold for A and B, after changing £ and ¢. Hence, we
may assume 0 €D (A)N D (B). By Browder’s theorem we have to show
R(A 4+ B +]) = X. Consequently it suffices to show that given f", the
Ay, in (1) are bounded as A —o0. We set v, = (I +AJ"Y Ay 1x,. Then
7, is in D (B) by (2). Also A, x;, is in Az,. Take & in B, such that (3)
gives

(@, I A ) = — 4 (loa]]) | Ar s |F — ¢ ([lal) 21 As 2 ]).
Suppose &, is the element of B (x;) giving equality in (1), that is

4) Ay kb + T =
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Since B is monotone, (df——é;f , o —x,) = 0. We take the product of (4)
with J—lA;u x; = At ()v‘;h — 'U;J.

AL 2, |2 = (f*— Jan, — b;f , AL )
= (dyr — b, N o —o) + (f — Jo.—dr, T AL w),
G AmlPE < I —Tml 1Azl + £ 2al) A2l - e (oal) 4 (| A 2 ])-

We claim xy, is bounded as A — o, taking the product of (4) with x;, and
taking 4" in B (0)

I P < @ —o, J(m) — J©) + (@ —0, Ay x + b — Ao — 6%
< flzall QA%+ A ©) I+ 11611 -

Since [|A; (0)]] < |A (0)| by Lemma 1.3 (&) of [3], after dividing by || 3 ||
we have ||z, || <M. We claim v, is bounded as A — 0. Taking the product
of My xy = J (o —vy) with oy, gives (J (. —w1), v) > A (a¥, vy) for any a*
in A (0), hence ||z, —n|® <A (@*, 2 —w) + (J (rn—w), m) — A (@, 1)
and consequently ||z, —z.|?— (|A(©)] +M) [|[xa—2i|| —|A(©)|M <o,
for A<<1, which implies || x), — 2, || is bounded, and consequently 2, is bounded.
From (5) it now follows that A, x; is bounded as A —o0. q.e.d.

Remark 1: Two special cases of (3) are:
(39 (% ] =0,
G Iyl < 2= D 1% e (=D
e [Br|<&(=)[Ax] + (=D,

which is Theorem 2.3 of [3]. We note in [3, Theorem 2.3] the approxima-
tions B, are taken on B rather than A. In Theorem 3.2 of [3], to show that
— A9y, is maximal monotone, a calculation like that in Theorem 1 is used.

Also, in Theorem 3.1 of [3] it is the condition (3') that gives — A + B
maximal monotone. In [4] it is supposed that 9 and B are maximal monotone
and satisfy a condition like (3'") in Hilbert space, and shown that the semi-
group satisfies regularity conditions.

COROLLARY 1: Suppose X a reflexive Banach space, A ,B:X — P(X™)
both maximal monotone, B™' or A being locally bounded, R(A) C D(B).
If BA is accretive then it is m—accretive.

Proof: Let ] be the duality map for an equivalent norm making X , X*
strictly convex [1]. By the proof of Theorem 2 of [10] it suffices to show
A"l £ B is maximal monotone. We define A, B by A(x) = A(x + %)
and B(x*) = B(x*) — @ where [#,%] € BA. BA is accretive and [o, o] € BA.
Consequently we may assume [0, 0] € BA. Hence for 4 in B (#*) and x*
in Ax, (Jx,8) =o0. This is condition (3") of Remark 1. Condition (2)
follows from R(A) C D(B). q.e.d.
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We now turn to the case where A = 3¢, . Suppose K is a closed convex
subset of a Banach space, the indicator function ¢, is defined to be zero on K
and co elsewhere. We recall that if f is a lower semicontinuous function from X
to (— oo, c0], we say w is in 3 () if for all y in X

©) JFO) =@,y —x) +f(x),

and @f is maximal monotone if f is not identically co. Consequently Ay
is maximal monotone for K nonempty.

COROLLARY 2: Let X be a Banack space with X and X* strictly convex
and K a closed convex subset of X. For x in X let Px be the nearest point to x
on K.  Suppose B:X — P (X") is maximal monotone, P (D (B)) C D (B),
and for y in D (B) there exists 6" in BPy such that

@y —Py) =—k(PyI) |y — Py IR—c(IPy]) 4(lly — Py ||)
where k,c,d are as in Theorem 1. Then B + alx is maximal monotone.

LeMMA 1: Suppose X a reflexive Banach space with X and X* strictly
convex, K a closed convex nomempty subset of X, P the projection taking x to
- the nearest point on K. Let g be the indicator function of K and let \ > o
be given. Then (I +A]1odg)™ = P.

Proof: The Lemma 3.8 of [9] showed (I +AJ™' og) 12D Px for X*
strictly convex, Px being the set of nearest points to x on K. When X is
strictly convex the left hand side has only one element, giving equality. q.e.d.

Proof of Corollary 2: By the Lemma P (D (B))CD (B) gives (2) of Theo-
rem 1. For (3), given x in KND(B) and #* in ax(x), let y = x + J71 &%,
and take for y* of (3) the 4" given in the statement of the corollary. q.e.d.

THEOREM 2: Swuppose X a reflexive Banackh space with X , X* Strictly
convex. Suppose A :X — P (X" is maximal monotone, f:X — (— oo, oo
is convex and lower semicontinuous, k , ¢ , d are functions as given in Theorem I.
Suppose that for [v,a’] in A, >o0

) f@+171a) =f @ —rE el 121 + e (lel) 4 e) -
Then'3f + A is maximal monotone.

Proof: By (7) we may take £ in D (A)N D (), ie. f(&) < oo.

Let f(v) =f(v+ %) and A (@) =A (@ +%). Then of (x + %) = of (x).
Consequently we must show A 4-3f is maximal monotone, or R(A 4-3f4-J) =X*,
by Browder’s Theorem. But o€D (A)ND (f), and (7) holds with A and
f replaced by A and f. Consequently we may assume o€ D(f)ND (A).
We need to show that A, x; given in (1) is bounded as A — 0. Suppose

Ao+ S (1) + J(m) o f.
This means by (6) that for v in X,

©) f@ = —Mm—Jn,vo—mn) +f(®).
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Letting v, = (I + AJ7'A) 1 x,, in particular

f@) = —Avx— Jo, — 2] Ay m) - f (n)
But by (7),

f@) </ @) +rE (ol [AnlP + ol 4 ([Avxl)) -
After dividing by A, we have

[Avml? < & (loal) A mlP + ¢ (lwall) € (A ll) + [|FF — Tl | Aw xall

which yields (5).
We now let v = o in (8), and obtain

2P < — Aamn, 2) + [l 171 +£©0) —F (=)

Take [y, w*] € 3f. Since (Ayx,2:)=> (A 0,1) and f(x)= (w*, 2 —3)+£ (),
it follows that

Faa P < I 2all QLA+ llee* | 4+ 1AL +£ () —f () — (%, 9) .

Since A, (0) are bounded, it follows that x; are bounded.
As in Theorem I, v, are bounded as A — 0, and hence A, x; are bounded.
q.e.d.

Remark 2: A special case of (7) is that for x in X and A > o
(7 FAAATTA 7)) <f(x).

One sees that Theorems 1 and 2 are similar, and if (7) implied (2) and (3)
(or more simply (7') implied (2) and (3’)) then Theorem 1 would imply
Theorem 2. However, this is not true in general, although the converse holds.

Remark 3: Suppose X, A and f are as in Theorem 2, without (7).
Suppose for A> o, (I +-2]J72A)™ D (3/)CD (3f), and for v in D (A) D (3f)
and &* in Av there exists 6 in 9f (v) such that (6%, J71(a*)) >o0. Then 7"
holds.

Proof: Suppose &* in Av, A>o0, and v + 2] 1a* =2 We want to
show f(v) <f(x). If x€D (3f) so does v by assumption, and by (6), for
all &% in of (v), f(v +A]J71a®) > f(v) + (6%, 2]71a*). By assumption there
exists 6% in 9f (v) making (6%, J7'a*) >o, giving f(v) <f(x).

Suppose now f(x)<< oo, we claim there exists x, —>x, f(x,) —f (%),
%, €D (3). This is because if K is the epigraph of f, K = {(x, &) €
€ XXR: % =f(x)} it has supporting hyperplanes in XXR at a dense
subset of the boundary by the Bishop Phelps theorem [2]. Now
(x,f(x)) is in the boundary, and the supporting hyperplanes give x, in
D (3f) with x, -, f(x,) -f(x) [14]. Given A >0, (I +2J 1Ay g,
converges weakly to (I +AJ'Ay ™ x by Lemma 1.3 (¢) of [3]. Since
%, €D (3f), f((1+2]JA) %) <f(x,). Since f is lower semicontinuous,
F@ =1+ A ) < Bmf (0 +AJ A ) < Bimf(x) = f (). If
f(x) = oo, then f(v) <f(x). q.e.d.
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COROLLARY 1: Swuppose X a reflexive Banach space; X , X* strictly convex,
K a closed convex nonempty subset of X. For x in X let Px be the nearest point
to x on K. Suppose, with ¢ a function as in Theorem 1, for x in X

f@) =f(Px)—c(|Px]) (K—=x[* + [K—=x])
Then f + ok is maximal monotone, and equal to 3 (f + k).

Proof: By Lemma 1, with A = 3k, the condition (7) fails but the proof
of Theorem 2 gives 3f - 2¢x maximal monotone. Since 3 + a¢x Ca(f =+ k)
and 9 (f + ¢k) is monotone, the maximality gives equality. q.e.d.

COROLLARY 2: Suppose X a reflexive Banach space with X, X* strictly
convex, K and P as in Corollary 1, and B another closed convex nonempty. sub-
set of X. If P(B)CB then oYk + op = opnk -

Proof: We take f = (g in Corollary 1. P(B) CB implies f(x) > f (Px).
By Corollary 1, g 4 oyp is maximal monotone, and one sees 5 + Yx = Ypnk
q.e.d. :

We will suppose X has uniformly convex dual X*. Since A:X — P (X)
is accretive iff y in Ax and v in Ax implies (y —v, J (x — %)) =0 [7],
[11], [12], the sum of two accretive operators is accretive.

THEOREM 3: Suppose X a Banack space with X* uniformly convex. Suppose
A and B are m—accretive, and for A >0 '

) I +24)7 D(B) CD(B).

Suppose for v in X there is a neighborhood N (v) of v, a function d
such that r2|d(r) — oo when r —oo, and k in [0,1); suck that for x in
DAYND @B NN ) and a in Ax there exists & in Bx suck that

(10) (Ja,8) =—kla|? —d (|al) -
Then A + B is m—accretive.

Proof. Itis enough to alter the proof of [11, Th. 10.2] by taking approxima-
tions with A, instead of B;. One uses the same calculation as in Theorem 1
to show that if Ay, + Bxy 4+ 2,5 and x, -2, as A —o0 then A, x, is
bounded, the equivalent of [11, 10.8] where B, v; are shown to be bounded.
q.e.d.
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