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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica applicata. — Profile Problems for Transonic Flows
with Shocks . Nota di CATHLEEN S. MORAWETZ, presentata ™ dal
Corrisp. G. FIcHERA.

RIASSUNTO. — Si considera il problema consistente nel determinare un flusso attraverso
un profilo simmetrico bidimensionale con un urto debole a termine del flusso supersonico. Viene
anche formulato e studiato un problema di perturbazione corrispondente ad un cambiamento
infinitesimale della velocita all’infinito. Viene provato un teorema di unicitd per un analogo
problema relativo all’equazione di Tricomi e, infine, formulato il problema di perturbazione
relativo all’'urto debole prodotto in un flusso privo di urti da un cambiamento della velocita.

§ 1. INTRODUCTION AND SUMMARY

In this paper we examine the problem of determining a flow past a two-
dimensional symmetric profile with a weak shock terminating the supersonic
flow, see [1]. A perturbation problem corresponding to an infinitesimal change
in speed at infinity is also formulated and investigated. A uniqueness
theorem for an analogous problem for the Tricomi equation is proved.

We are led finally to a formulation of the perturbation problem for a
smooth transonic flow, i.e., for the weak shock induced in a shockless flow
by a change of speed. This involves finding a solution of the perturbation
equations along with boundary conditions and an appropriate singularity
at the downstream intersection of the sonic line and the profile.

It is clear from earlier work [2, 3], that we cannot expect the existence
of a solution without the admission of a sonic singularity. In fact it was
established there that the perturbation problem is not well posed if the
solution is sufficiently smooth. In [4] the analogous paradox has been resolv-
ed for a Dirichlet problem for the Tricomi equation.

(*) Results obtained at the Courant Institute of Mathematical Sciences, New York
University, with the United States Army Research Office, Contract DA-31-124-AR0O-D—-365.
(**) Nella seduta del 14 novembre 1970.

26. — RENDICONTTI 1970, Vol. XLIX, fasc. 6.
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§ 2. FORMULATION OF THE SHOCK PROBLEM

The velocity (#,v) of a two-dimensional flow -satisfies
(I> <9%>x + (PU>J/ =0 ’ U,— Uy = O

where the density p is a known function of ¢2 = %2 4 ¢2, given the equation
of state and Bernouilli’s law. This relation has the property that d (pg)/dg
changes sign when the flow is sonic, ¢ = ¢,. The shock conditions, entropy
and rotationality changes being neglected, are: '

(2) [ex]dy —[pv]dr =0 , [u]dx +[v]dy =0

where dy/dx is the slope of the shock and [ ] indicates the discontinuity.
Thus we have

(3 [pee] [w] + [pv] [v] = o.

With #z =¢ cos 0,v =¢ sin0 and using ~ to denote the average of the
front and back state we have

(5% [cos 0] + [pg] cos 0) (7 [cos 0] + [¢] cos B)

+ (6 [sin 0] + [pg] sin 0) ([¢] sin 0 + 7 [sin 0]) = o
or

2 pg 7 (1 — cos [0]) +—-[pg] [¢] (1 + cos [0]) = o
or to third order in [0] or [g]

[0)2 = — [eg) [g]
07 q
Noting that d (pg)/dg =0 at ¢ =¢,,p = p, we find to second order

in 8¢ =¢g—c¢,
@ [6] = A 31 [3]

where

2 2.1 &
Al =—(px ) gz (p2) ‘q

=cy

We note for later use that we also find to second order

(s ol _ Lol _ o, S,

The simplified shock polar (4) must be coupled with (2) to determine
the slope of the shock.

If we introduce the streamfunction ¢ by ¢, = —pv, {, = px and the
potential ¢ by @, = u, ¢, = v, we find that (2) reduces to

6) ¢, @ continuous

The conditions for a given speed ¢, in the x—direction at co and no
circulation are

@) P> 90 » Py >0, ¢ single-valued.
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The condition on a fixed boundary is

(®) ¢ = constant.

The flow in a suitable hodograph plane with ¢ = ———j; dg,K(c)=—¢q (5)6
satisfies

©) Koo + Yo =0

or

9% Kds =05,  do=—0a.

The conditions at oo reduce to describing the flow near ¢ =o, , 0 = o.
In the symmetric case to which we limit ourselves we have, see [11],

(10) { — B¢ ~ const. (0 + 7 (c — ) B)™

where 872 = K (6,)- Corresponding to the stagnation points we have for ¢
as ¢ — oo,

(11) ey , €29y, bounded

where density has been normalized so that ¢ ~ ¢°.
Across the shock, (6) becomes

(12) bO,o)=0v0,00) , ¢(0,0)=20(0,0)
where 0;, 0,, 61, 65 are related through (4) by, with y = — (pq)(,(,/p?6 Cy»
(13) (6, —0,)" = — % ¥ (61 + 63) (61— 03)".

The hodograph plane is illustrated in fig. 1. The curves C; and Cp represent
the two sides of the shock. The supersonic side C2 must be ¢ time-like " if

the streamline boundary is “ space-like ”’. And hence lies between the two
o
Stagnation Stagnation
6,0

- O

Fig. 1.
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characteristics I'1 and I'2 as it crosses the sonic line. That is, if, say, the
state ahead of the shock (2) tends to sonic, then ¢ — o0 and

(61— 02)? = 0 (c}).

§ 3. FINDING PROFILE FLOWS WITH SHOCKS

To find a profile flow in the hodograph plane we must find a solution
of (8-13). For the construction of smooth flows see [5], and for local
shock flows see [6]. There remains the problem of mapping such a flow
into the physical plane. For this we would like to have the Jacobian

3, 9)
9(0,0)

solution ¢ with continuous second derivatives in 0, ¢ that does not have a
limiting line which makes the mapping impossible. The argument is as
follows: Expand ¢, ¢ in Taylor series about the sonic point of the shock,
taking the flow there in the x—direction. Substitute the series in 0,06 in
the shock conditions (12) and the differential equations (9) and (9*). Then
up to second order with the derivatives evaluated at (o, 0),

o [6] + do [6] + Yoo B [0] + Yoo (0 [6] + & [0]) = o,
P [0] — Yoo 0 [0] + £y 5 [6] =0,

x @

E=K= o () = — Gadeolsl & = .

= K{i + ¢2==0. Itis worth noting first that there does not exist a

Using (13)‘ we see immediately that ¢y = o and also that

+ (v3)" (o + Yoo 0 + Yoo &) + oo f=o , A (3 e B + Ay 5 =o0.

Thus since 61 ~ 0z we find 02 ~ = Uy (v5)"*/ Yy .

Since one side of the shock is subsonic and the other supersonic
|6| <|ogz| by (13) and y >0 so that | 82| < |{s/bes| |yoa|"™

But the limiting line is g o — $s 9o = K () $§ + ¢ = 0 or voli +
+ {gs 02 = 0. Hence |02] < |0] where 62 is on the shock curve and 6 is
on the limiting line. Thus the limiting line cuts off the shock at the subsonic
region unless Yy = 0. In the latter case the higher expansion yields a flow
with even worse mapping properties.

To avoid this difficulty we may either seek a solution with a singularity
or settle for a solution that satisfies the shock conditions only to first order,
see Garabedian and Korn [5].

We turn to the problem of finding a profile flow with an appropriate
singularity in the hodograph plane, i.e., a solution of (8-13) with a given
shape for the hodograph of the body @ and a given shape for the subsonic

(1) We assume 0 changes monotonically and ¢ has one minimum.
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hodograph of the shock Ci. At this stage we can only check that the given
data ‘“ count”’ correctly.

We examine the intersection of the characteristic I'1 (upstream) with &
the profile hodograph. If this point is not downstream of the point of maxi-
mum speed, then using the methods described in [1] a flow solution of (g%)
or (9) satisfying (8), (10), (11) with, say, ¢ = f on the subsonic shock hodo-
graph Cj is uniquely determined up to the characteristic I'1. The continuation
of the solution for both ¢ and ¢ up to the downstream characteristic I's is
also uniquely determined, i.e., by one datum each on the characteristic I'1
and the space-like curve & This statement is almost certainly true without
the restriction on I'1. In fact one may reasonably expect that the solution
(o, ¢) may be expressed as a linear functional of the singularity at (o, o)
and the given function f. Thus whatever the timelike curve Cy: 65 = 65 (0,),
representing the supersonic side of the shock both ¢ and ¢ are determined
on it.

Substituting these functional relations into the three shock conditions
we find that we have two linear functional relations for the two functions f
and ¢ = o, (03). The singularity at (o, o) provides the non-homogeneity
if we regard these two relations as equations for f and ¢, (0;), and we may
expect that a solution can be determined. On the basis of the example
described in [4] and the previous arguments here, there probably is a singu-
larity at the sonic point of the shock.

§ 4. FORMULATION OF THE PERTURBATION PROBLEM FOR THE SPEED
AT INFINITY

In this section we assume there exists a flow corresponding to some
hodograph solution, such as that described in the preceding section. The
equations for'the perturbed potential 3¢ and streamfunction 3¢ satisfy, see[11],

(14) K(0)3py = 3ys , 3ps=— 3y

where now

d
1s) K@= tt—gl) , o=—[2L.
Since the profile is undisturbed we have 8 = o there, see (8), and hence
(16) Kdgydo— dg,dd =0 on §.
The singularity at (0, 6,,) corresponding to the perturbation of the speed
3¢, is given by

(17) By 8gs — id¢s = 8y, (Bs W2 -0 (W) + 82y (W + 0 (1))
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where 3;, 8, are given constants, W = 0 4- 78, (6 —c_), and 8¢, is to be
determined. ,

The perturbed shock is assumed for convenience to be given by
x =X (y) + 38X (y) where x = X (y) describes the unperturbed shock.
Expanding the shock conditions one easily finds the perturbed shock condi-
tions on the unperturbed shock curve:

(18) [8¢ + #8X] = [8) + pv 8X] = 0 across x = X (¥)

where #,v, p are the unperturbed velocities and density and [T is jump.
Thus, since [X] = o, we have [8¢] [pv] 4 [8¢] [#] = o or using (3), as the
shock is nearly sonic, we have

(19) (3] = o, 2, AV 57 [30]

where 3; = % (1 +g2—2¢,) for the undisturbed shock is proportional

to o7 4 o5.

An argument similar to that for the undisturbed shock, § 3, shows that
this problem, (14), (16), (17), (19), along with the analogue of (11), counts
properly.

A further indication that this problem is correctly posed is given by
the following uniqueness theorem where the underlying conditions of the
boundary value problem have been preserved.

THEOREM: Let D be a domain bounded by the line £ : 0 = o, and a convex
curve C. For ¢ <o, the Frankl condition ¢ d0® + d6® < o holds on € and
also do <o (counter clockwise). Suppose u satisfies cug ~+ 653 = 0 in D,
u=0 on C, and uy(c,0) = uy(— c,0) holds on 2.

If u has pieccewise continumous second derivatives in D and continuous
Jirst derivatives in D then u = o.

Proof: The function y = J((«mﬁ — u2) do — 2 ug ug dO) is path independ-

ent and assumes its maximum in D on 99, see [1]. It also satisfies Hopf’s
strong maximum principle for ¢ >o0. By substituting the boundary condi-
tion on € and noting the conditions on € one finds that dy can change sign
only at the point on @ where do/ds = 0,06 >o0. However, at that point,
(61, 91),3y/36 < 0. Therefore by Hopf’s principle if ¥ == const. for ¢ > o,
its maximum cannot be assumed at (6y,6;) but must be assumed on
£:0=o0,sayatey. Thusy (o1, 0;)<y(cy,0). Buty(65,0)—y(—6y,0)=

[

cs
J (cuy — ud) do = — J 4% do by the difference boundary condition on £. But
—0y ! —0;

Xo <0 for ¢ <o and hence y(—o;,0) <y (63,0),03 <0 where (o3, 0)
lies on @ However, as we have seen, y is non-decreasing going counter-
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clockwise on @ from (63,0) to (6;, 0;). Hence we have the contradiction,

x (o1, 01) <y (o3,0) <y (o1, Oy).

Thus y = constant for 6 >0 and by continuation for ¢ <o. Thus # = o.
This proof could be modified so that either boundary condition # = o
or ouy do — u;d0 = o can be imposed on C.

§ 5. SPEED PERTURBATION PROBLEM FOR SMOOTH TRANSONIC FLOW

To formulate this problem we consider it as a limiting case of the preced-
ing problem. As the undisturbed shock conditions we then obtain [8¢] = o
where now [ ] indicates the jump across the sonic boundary point. But
from the boundary condition (16) this condition will automatically be satisfied.
Thus we seek a solution of (14), (16), (17) with a singularity at the down-
stream sonic point.

However, the singularity must be weak enough not only to make the
problem well posed but so that the disturbance in the physical plane is finite.
From do¢ +7p~td{ = W dz see that 3¢, 8¢ must be continuous.

In addition to describing the development of the shock at the sonic
point one must introduce a change of variables in the physical plane. That
corresponds to a stretching and makes the shock length finite. The correspond-
ing flow should then behave at infinity as the perturbation flow behaves
near the sonic boundary point.

At first glance, there appears to be a contradiction with the “gap”
problem described in [2], [3].  But these only show that (14), (16), (17) do
not provide a well-posed problem without the admission of singularities.
On the contrary, a strong indication that this problem is correctly posed is
given by an appropriate theorem for a singular Dirichlet problem for the
Tricomi equation [4]. The object there was to find some closed domain for
which the Dirichlet problem with data prescribed on the whole closed
boundary would be well posed if the solution had its derivatives in an appro-
priate space with corresponding norm:.

The non-homogeneous Tricomi equation, say, yu,, + #,, =f, is first
replaced by a system for U = (%, , u,):

yulx—%2y:f1 ) u1y+%2x=0

which we write as LU = F. After formulating a weak existence theorem
with the boundary conditions #; dx + #, dy = 0 we ascertain the most general
norm in which existence could be established by the projection theorem.
This imposes differential and boundary inequalities on an auxiliary matrix.
We determine such a matrix by elementary polynomials and a corresponding
domain. However, the resulting norm, although it is locally L? away from
y = o, admits too wide a class of functions at the parabolic boundary points
and the norm must be adjusted to restrict the functions and achieve uniqueness.
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Consider the domain D illustrated in fig. 2. Taken counterclockwise
9D satisfies

(@) H<x<o;

(ét) (—a +§y3) dy —]—%xy3/2dx20,y>o;
(#77) |x]_1(xdy—ydx)+|x[—2y3 (%dy+adx>>o,y<o, some o> 0;
@) |y <k|x|,|y| <k|x—x],

' dy \2
(v)y(%) +1>0,y<o.

The last condition is the Frankl condition that the boundary nowhere
becomes characteristic.

Ay

3P

0 )
) =X
\ /
\ /
N %
AN e
char™ - _ _“"char.
e
Fig. 2

Let the positive function

pr=rklxly+S@(E—m+ 25y, >0
=AYl S @ E—x0" ]y, y<o
pr = kx| 68 () —x) + 257 y>o0
=/k|x| + ¢S @) (x —x0) 72 y <o

'p, O
be used to define the matrix P = (yﬁl —
o Yy

)and let the matrix elements
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Vi of V satisfy vy, = vy, v9; = — Y235, with
—1/2
vll=—x2—l—%y3—~e((x——x0)2—|—~g—y3} S(x), y=o0
=Pl ) S @), y<o
) 9 [ \—1
mp=—22y +e S ()’ + 55 S@ ., y=zo
= —uxy —ay?, y <o.

Here S (x) represents a positive function, with S, <o0,S=1 in a neigh-
borhood of (x4,0),S = 0 outside a larger neighborhood and smooth in
between. The constant e > o is chosen sufficiently small, « is given by (477),
and 4 is an appropriate positive constant.

We define the scalar product (-,-) by integration over ®® and adjoint by *.

THEOREM: If F satisfies (P~' V' F,P7'V* F) < oo, there exists a unique
weak solution of LU=F satisfying (PU, PU) < oo and j (2y dxx + 2y dy)Pds =0

on every segment of 39, |y|>98. The solution U is in L* on every space-like
curve mot intersecting y = O.

The proof is based on manipulating the inequality (P®,P®) <
< 2 [(L®,VO)| for all smooth functions @ satisfying the boundary condi-
tions ®;dx + ®2dy = o. This inequality comes by straightforward integra-
tion by parts. The underlying principle for obtaining from this inequality
the weak existence theorem by projection is described in [1], or more gener-
ally in [8]. The uniqueness theorem would follow if the solution were smooth
and the inequality could be applied directly. Instead a careful smoothing
process shows that the inequality holds except for possible contributions
from the two parabolic boundary points. These contributions can be shown
to be negligible provided the constant e is not zero.

We note finally that the norm defined in the theorem admits 2 = °F

ox ’
Uy = —97 where F is the fundamental solution of the Tricomi equation, see [7],

which behaves near (0, 0) like »~13 where 72 = a2 —!—g-y3. This function

does not lie in L? nor does it lie in the natural norm f([y[ "0 —}—ug) dx dy

that is associated with Tricomi equation. This suggests that what we have
in our theorem is not quite the analogue of the elliptic Dirichlet problem
but the analogue of a Dirichlet problem with the solution, prescribed on a
closed boundary, admitting a logarithmic singularity at one boundary point
and being required to vanish at another.
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