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RENDICONTI
DELLE SEDUTE

D E L L A  ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fìsiche, matematiche e naturali

Seduta del 12 dicembre i g j o  
Presiede i l  Presidente B e n i a m i n o  S e g r e

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

Matematica applicata. — Profile Problems fo r  Transonic Flows 
with Shocksn . Nota di C a t h l e é n  S. M o r a w e t z ,  presentata (**} dal 
Corrisp. G. F i c h e r a .

R iassunto, — Si considera il problema consistente nel determinare un flusso attraverso 
un profilo simmetrico bidimensionale con un urto debole a termine del flusso supersonico. Viene 
anche formulato e studiato un problema di perturbazione corrispondente ad un cambiamento 
infinitesimale della velocità alPinfinito. Viene provato un teorema di unicità per un analogo 
problema relativo all’equazione di Tricomi e, infine, formulato il problema di perturbazione 
relativo all’urto debole prodotto in un flusso privo di urti da un cambiamento della velocità.

§ i .  I n t r o d u c t io n  a n d  S u m m a r y

In  this paper we exam ine the problem  of determ ining a flow past a two- 
dim ensional sym m etric profile w ith a weak shock term inating the supersonic 
flow, see [ i] . A  pertu rbation  problem  corresponding to an  infinitesimal change 
in speed at infinity is also form ulated and investigated. A  uniqueness 
theorem  for an  analogous problem  for the Tricom i equation is proved.

W e are led finally to a form ulation of the perturbation  problem  for a 
sm ooth transonic flow, i.e., for the weak shock induced in a shockless flow 
by a change of speed. This involves finding a solution of the perturbation 
equations along with boundary  conditions and an appropriate singularity 
at the dow nstream  intersection of the sonic line and the profile.

It is dlear from  earlier work [2, 3], th a t we cannot expect the existence 
of a solution w ithout the adm ission of a sonic singularity. In  fact it was 
established there th a t the pertu rbation  problem  is not well posed if the 
solution is sufficiently sm ooth. In  [4] the analogous paradox  has been resolv
ed for a D irichlet problem  for the Tricom i equation.

(*) Results obtained at the Courant Institute of Mathematical Sciences, New York 
University, with the United States Army Research Office, Contract D A -3i-i24-A RO -D -305.

(**) Nella seduta del 14 novembre 1970.

26. — RENDICONTI 1970, Voi. XLIX, fase. 6.
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2. F o r m u l a t io n  o f  t h e  Sh o c k  P r o b l e m

T he velocity (u , v) of a two-dim ensional flow satisfies

(1) (9u)x +  (pv)y =  O , uy —  vx =  o

where the density  p is a know n function of q2 =  u2 v2, given the equation 
of state and B ernouilli’s law. This relation has the property  th a t d (pq)/dq 
changes sign when the flow is sonic, q — c^. T he shock conditions, entropy 
and ro tationality  changes being neglected, are:

(2) [pu] dy —  [pv] dx  — o , \u] dx  +  [v] dy =  o

where dy\d x  is the slope of the shock and [ ] indicates the discontinuity. 
T hus we have

(3) [?u\ [u\ +  [pw] [»] =  o.

W ith u  =  q cos 0 , v =  q sin 0 and using ~ to denote the average of the 
front and back state we have

(pq [cos 0] +  [pq] cos 0) (q [cos 0] +  [q] cos 0)

+  (pq [sin 0] +  [p^] sin 0) ([q] sin 0 +  q [sin 0]) =  o
or

2 —  cos [0]) +  — [pç] [q] (1 +  cos [6]) =  o

or tp th ird  order in [0] or [q]
j-0j2 = __ [py] [q] '

pq q

N oting th a t d (pq)/dq =  o at q — , p =  p  ̂ we find to second order
in 8q =  q —  r*

(4)
w here

A? =

[6] =  Ai 8ÿV* [8y]

(psO( 2\ - i  A’ \P* c*) "dp

W e note for later use th a t we also find to second order

(5) W  =  - W - = ‘’* ‘* A 1 *

T he simplified shock polar (4) m ust be coupled with (2) to determ ine 
the slope of the shock.

I f  we introduce the stream function <p by tp* =  —  pv , =  pu and the
potential 9 by cpx =  u  , cpy =  v, we find th a t (2) reduces to

(6) tp , 9 continuous

T he conditions for a given speed qœ in the ^-d irection  at 00 and no 
circulation are

(7) 00 9 single-valued.



Cathleen S. Morawetz, Profile Problems fo r  Transonic, ecc. 349[171]

T he condition on a fixed boundary  is

(8) ^ =  constant.

T he flow in a suitable hodograph plane with a =  — 
satisfies

(9) K^ee +  <̂pq> — o

or

(9*) K^e =  <p0 , )a =  —  90.

T he conditions at 00 reduce to describing the flow near a =  cs  ̂ , 0 =  o. 
In  the sym m etric case to which we lim it ourselves we have, see [11],

(10) ty —  zß9 ~  const. (0 +  i  (a —  aœ) ß)“ 1/2

where ß 2 =  K (a^). C orresponding to the stagnation points we have for -ty 
as <7 -> 00,

(11) ^2o 4'e , e2a bounded

where density  has been norm alized so th a t q ~  eG.
Across the shock, (6) becomes

( 1 2 )  +  ( e i  > ffi )  =  +  (0 2  » ®a) > <? ( 0 i  . <h) =  <P (0 2  . ®a)

where 63. , 02 , ct, , ct2 are related through (4) by, with y =  —: (pÿW p* <?*,

( 13) (0i 62)2 = -----— T Oh. +  <*2) Oh '— <h)2-

The hodograph plane is illustrated in fig. 1. The curves Ci and C2 represent 
the two sides of the shock. The supersonic side C2 must be “ time-like ” if 
the streamline boundary is “ space-like And hence lies between the two

Fig. I.
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characteristics F± and T2 as it crosses the sonic line. T h at is, if, say, the 
state ahead of the shock (2) tends to sonic, then <j-> o and

To find a profile flow in the hodograph plane we m ust find a solution 
of (8-13). For the construction of smooth flows see [5], and for local 
shock flows see [6]. T here rem ains the problem  of m apping such a flow 
into the physical plane. For this we would like to have the Jacobian

solution + w ith continuous second derivatives in 0 , a th a t does not have a 
lim iting line which m akes the m apping impossible. The argum ent is as 
follows: E xpand  + , (p in T ay lo r series about the sonic point of the shock, 
taking the flow there in the ^-d irection. Substitute the series in 0 , c in 
the shock conditions (12) and the differential equations (9) and (9*). Then 
up to second order w ith the derivatives evaluated at (0 ,0 ) ,

U sing (13) we see im m ediately th a t +0 =  o and also th a t 

i  ( ï a )1/2 (4*0+^00 ö + ^ 0o  0 — O J ±  (yS )1/2 +0O 0 +  >£+0 o’ =  o .

T hus since Oi ^  62 we find 02 ^  zb +0 (yS)1/2/+e0 •
Since one side of the shock is subsonic and the other supersonic 

I a I <  I g-2 I by  (13) and y > o  so th a t | 02 | <  | <JV+00 I |y<*2 |1/2-
B ut the lim iting line is +0 <p0 —  +0 90 =  K (a) 4*0 +  +o =  0 or yff+0 +  

+  +00 02 =  °* Hence | 62 | <  | 0 ] where 02 is on the shock curve and 0 is 
on the lim iting line. T hus the lim iting line cuts off the shock at the subsonic 
region unless +0 =  o. In  the latter case the higher expansion yields a flow 
w ith even worse m apping properties.

To avoid this difficulty we m ay either seek a solution w ith a singularity 
or settle for a solution th a t satisfies the shock conditions only to first order, 
see G arabedian and K orn [5].

W e tu rn  to the problem  of finding a profile flow w ith an appropriate 
singularity  in the hodograph plane, i.e., a solution of (8-13) w ith a given 
shape for the  hodograph of the body (1) and a given shape for the subsonic

(01--- 02)2 =  O (di).

§ 3. F inding Profile Flows with Shocks

— K +0 +  +2 =f= °- H is w orth noting first th a t there does not exist a

+0 [0] +  M  +  +00 0 [6] +  (0 [a] +  5 [0]) =  o ,

+0 [0] —  +00 0 [0] +  ^+0 s  [a] =  o ,

(1) We assume 0 changes monotonically and ci has one minimum.
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hodograph of the shock C i . A t this stage we can only cheek th a t the given 
data  “ count ” correctly.

We exam ine the intersection of the characteristic IT (upstream ) with $ 
the profile hodograph. I f  this point is not downstream  of the point of m axi
m um  speed, then using the m ethods described in [i]  a flow solution of (9*) 
or (9) satisfying (8), (10), (11) with, say, — f  on the subsonic shock hodo
graph  Ci is uniquely determ ined up to the characteristic IT. The continuation 
of the solution for both 9 and ^ up to the downstream  characteristic IT is 
also uniquely determ ined, i.e., by one datum  each on the characteristic Ti 
and the space-like curve $*. This statem ent is alm ost certainly true w ithout 
the restriction on T i . In  fact one m ay reasonably expect th a t the solution 
(9 , ty) m ay  be expressed as a linear functional of the singularity at (o , Gœ) 
and the given function / .  Thus w hatever the timelike curve C2 : a2 =  a2 (02), 
representing the supersonic side of the shock both 9 and ^ are determ ined 
on it.

Substituting these functional relations into the three shock conditions 
we find th a t we have two linear functional relations for the two functions /  
and cr =  a2 (02). T he singularity  at (o , a^) provides the non-hom ogeneity 
if we regard these two relations as equations for /  and a2 (02), and we m ay 
expect th a t a solution can be determ ined. On the basis of the example 
described in [4] and the previous argum ents here, there probably is a singu
larity  at the sonic point of the shock.

§ 4. F o r m u l a t io n  o f  t h e  P e r t u r b a t io n  P r o b l e m  f o r  t h e  S p e e d

a t  I n f i n i t y

In  this section we assum e there exists a flow corresponding to some 
hodograph solution, such as th a t described in the preceding section. The 
equations for the perturbed potential 89 and stream function satisfy, see [ 11 ],

(14) K (a) 890 =  8<fc, , 890 =  —  S^e

where now

(15) K ( a ) =  p3 ( i - ^ 2)

Since the profile is undisturbed we have 8<j; =  o there, see (8), and hence

(16) .R8<p0 da —  890 dO =  0 on S.

T he singularity  at (o , Gœ) corresponding to the perturbation of the speed 
8̂ 00 *s given by

(17) p! 890 — =  8?co (Pa W~3/2 +  o (W -1)) +  K  (W -1/2 +  O (i))'
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where ßx , ß2 are given constants, W =  0 +  (a — a j), and 8 ^  is to be 
determined.

The perturbed shock is assumed for convenience to be given by 
^  =  X (y) -f- 8X (y) where x  =  X (y) describes the unperturbed shock. 
Expanding the shock conditions one easily finds the perturbed shock condi
tions on the unperturbed shock curve:

(ï8) [89 +  #8X] =  [8^ +  pv 8X] =  o across x  =  X (y)

where u , v , p are the unperturbed velocities and density and [ ] is jump. 
Thus, since [SX] =  o, we have [89] [pv] +  [8^] [u] — o or using (5), as the 
shock is nearly sonic, we have

0 9 ) m ]  =  q* A x Ì  §q [89]

where 8q =  — (qr +  q2 — 2 cf) for the undisturbed shock is proportional 
to <?•£ -j- a2.

An argument similar to that for the undisturbed shock, § 3, shows that 
this problem, (14), (16), (17), (19), along with the analogue of (11), counts 
properly.

A further indication that this problem is correctly posed is given by 
the following uniqueness theorem where the underlying conditions of the 
boundary value problem have been preserved.

T h e o r e m :  Let 3) be a domain bounded by the line 2 : 0 =  o, and a convex 
curve 0 . For g <  o, the Frankl condition g d 02 -f- da2 <  o holds on 0  and 
also da <  o (counter clockwise). Suppose u satisfies guqq -f- uaG =  o in
u  =  o  on 0 , and u§ (or , o ) =  u§ (—  g , o ) holds on 2.

I f  u has piecewise continuous second derivatives in  2) and continuous 
firs t derivatives in  3) then u =  o.

Proof. The function y == — *4 ) do- — 2 # , uQ d 0) is path independ

ent and assumes its maximum in ® on 3®, see [1]. It also satisfies H opf’s 
strong maximum principle for o >  o. By substituting the boundary condi
tion on © and noting the conditions on © one finds that dy can change sign 
only at the point on © where do/d.r =  o , a >  o. However, at that point, 
(ci ) 0i) > ay/9c ^  °- Therefore by H opf’s principle if y ^  const, for a >  o, 
its maximum cannot be assumed at (04, 0^ but must be assumed on 
£ : 0 =  o, say at o2 . Thus y (ct, , 0,) <  y (o2 , o). But y (o2 , o) — y (— tr2 , o) =

da by the difference boundary condition on 2. But

Xo <  °  f°r .<* <  o and hence x (—  a2 > °) ^  X (^3 > °) j a3 ^  °  where (a3 , o) 
lies on 0. However, as we have seen, % is non-decreasing going counter-
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clockwise on © from  (<j3 , o) to , 0!). Hence we have the contradiction, 

1  K  > 0i) <  X (0-3 > o) <  X (<Ji, 0i).

Thus x == constant for a >  o and by continuation for a <  o. Thus u  == o.
This proof could be modified so th a t either boundary  condition u  =  o 

or der — u G dQ =  o can be imposed on C.

§ 5. S p e e d  P e r t u r b a t io n  P r o b l e m  f o r  S m o o t h  T r a n s o n ic  F l o w

To form ulate this problem  we consider it as a lim iting case of the preced
ing problem . As the undisturbed shock conditions we then obtain [8^] =  o 
where now [ ] indicates the jum p across the sonic boundary  point. But 
from the boundary  condition (16) this condition will autom atically  be satisfied. 
T hus we seek a solution of (14), (16), (17) with a singularity  at the down
stream  sonic point.

However, the singularity  m ust be weak enough not only to m ake the 
problem  well posed bu t so th a t the disturbance in the physical plane is finite. 
From  dep +  fp-1 dtp =  W  dz see th a t 8 9 , 8tp m ust be continuous.

In  addition to describing the developm ent of the shock at the sonic 
point one m ust introduce a change of variables in the physical plane. T h at 
corresponds to a stretching and m akes the shock length finite. T he correspond
ing flow should then  behave at infinity as the perturbation  flow behaves 
near the sonic boundary  point.

A t first glance, there appears to be a contradiction w ith the “ g a p ” 
problem  described in [2], [3]. B ut these only show th a t (14), (16), (17) do 
not provide a well-posed problem  w ithout the admission of singularities. 
On the contrary, a strong indication th a t this problem  is correctly posed is 
given by an appropriate theorem  for a singular D irichlet problem  for the 
Tricom i equation [4]. T he object there was to find some closed dom ain for 
which the D irichlet problem  w ith data  prescribed on the whole closed 
boundary  would be well posed if the solution had its derivatives in an appro
priate space w ith corresponding norm.

T he non-hom ogeneous Tricom i equation, say, y u xx +  uyy =  / ,  is first 
replaced by a system  for U  =  (ux , u 2):

J u lx u zy — f i  ì u ly  -J- u2x =  o

which we write as LU =  F. A fter form ulating a weak existence theorem  
with the boundary  conditions ux dx  -f- u 2 dy =  o we ascertain the m ost general 
norm  in which existence could be established by the projection theorem . 
This imposes differential and boundary  inequalities on an auxiliary  m atrix. 
W e determ ine such a m atrix  by  elem entary polynom ials and a corresponding 
dom ain. However, the resulting norm , although it is locally L 2 aw ay from 
y  =  o, adm its too wide a class of functions at the parabolic boundary points 
and the norm  m ust be adjusted to restrict the functions and achieve uniqueness.
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Consider the dom ain D illustrated in fig. 2. T aken counterclockwise 
3D satisfies

( 0  Xq < x . <  o;

(u ) (”  X3) +  —- x y 3/2 dx  >  o , y  >  o;

(m ) 1̂ 1 ( ^ d y — y d ^ )  +  |^ | 2y 3 d y + ad ^ :j >  o , y  <  o, some a > o ;

(iv) I y  I <  k  Ix  I , I y  I < k \ x  —  x 0 [,

w  y { - w f + 1 > ° - ^ < o .

The last condition is the F rankl condition th a t the boundary nowhere 
becomes characteristic.

L et the positive function

Pi  =  k  \ x  \ y  +  sS (x) ((* — X 0 f  +  ^  y  , y >  o 

— k  I y  |3 +  £S (x) (x  —  x 0) ~ 2 I y \ ,  y  < 0

p 2 = P \ x \  +  sS (x) {(x — x 0f  +  ■— y 3]j 1, y >  o

=  k I x  I +  sS (x) (x  —  y  <  o

be used to define the m atrix  P =  [ ,— ) and let the m atrix  elements
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of V satisfy vn  — v22 , V21 =  ~— y v  12 with

2 , 4 3 If V n = — x  + ~ y  —  e ( 0 -- , 0)2 + l / j - 1/2S ( , ) 1 y  >  0

II + CO 0) i-  X q T 1 S 0 ) , y  <  0

vi2 =  —  2 x y  +  £ j  y 3/2 ((x - x o f + ^ y j 1 S O )  , y  >  0

II CO y  <  0

H ere S (x) represents a positive function, with S* <  o , S =  i in a neigh
borhood of (x0 , o) , S == o outside a larger neighborhood and smooth in 
between. T he constant e >  o is chosen sufficiently small, a is given by  (Hi), 
and k  is an appropriate positive constant.

W e define the scalar product (•, •)  by integration over and adjoint by *.

T h e o r e m :  I f  F  satisfies (P 1V  F, P 1V* F) <  oo, there exists a unique

weak solution o f LU  =  F  satisfying  (PU  , PU) <  oo and j (ux dx  +  u 2 dy f  ds =  o

on every segment o f 9 | j k | >§ .  The solution U  is in  L 2 on every space-like 
curve not intersecting y  =  o.

T he proof is based on m anipulating the inequality  (P<D , PO) <  
<  2 I (LO , VO) I for all sm ooth functions O satisfying the boundary  condi
tions Oi dx  +  O2 dy =  o. This inequality  comes by straightforw ard integra
tion by parts. T he underlying principle for obtaining from this inequality 
the weak existence theorem  by projection is described in [1], or more gener
ally in [8]. T he uniqueness theorem  would follow if the solution were smooth 
and the inequality  could be applied directly. Instead a careful smoothing 
process shows th a t the inequality  holds except for possible contributions 
from  the two parabolic boundary  points. These contributions can be shown 
to be negligible provided the constant s is not zero.

We note finally th a t the norm  defined in the theorem  adm its u  ̂ — - ,oX
9F

u 2 =  where F is the fundam ental solution of the Tricom i equation, see [7], 

which behaves near ( 0 , 0 )  like r ~1/3 where r 2 =  This function

does not lie in L 2 nor does it lie in the natu ral norm  j (\ y  \u f  f i u f  dx  dy

th a t is associated w ith Tricom i equation. This suggests th a t w hat we have 
in our theorem  is not quite the analogue of the elliptic D irichlet problem  
but the analogue of a D irichlet problem  with the solution, prescribed on a 
closed boundary, adm itting a logarithm ic singularity at one boundary point 
and being required to vanish at another.
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