Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Alfonso Vignoli

An intersection theorem in Banach spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 49 (1970), n.3-4, p. 180-183.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1970_8_49_3-4_180_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi funzionale. - An intersection theorem in Banach spaces. Nota ${ }^{(*)}$ di Alfonso Vignoli (*), presentata dal Socio G. Sansone.

Summary. - Let the Banach space $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ be the direct sum of two subspaces $\mathrm{A}, \mathrm{B} \subset \mathrm{X}$, and let $f: \mathrm{A} \rightarrow \mathrm{X}, g: \mathrm{B} \rightarrow \mathrm{X}$ be continuous mappings. A condition is given on f and g in order to ensure that the intersection $f(\mathrm{~A}) \cap g(\mathrm{~B})$ is not empty.
i. Introduction. Let X be a real Banach space. Assume that $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ i.e. X is a direct sum of two subspaces $\mathrm{A} \subset \mathrm{X}$ and BCX .

Let $f: \mathrm{A} \rightarrow \mathrm{X}$ and $g: \mathrm{B} \rightarrow \mathrm{X}$ be continuous mappings. Granas in [I] states a sufficient condition in order that $f(\mathrm{~A}) \cap g(\mathrm{~B}) \neq \varnothing$.

The aim of the present paper is to extend Granas' result to a more general class of mappings.

We will use the following notations. Let $A \subset X$ be a bounded set of a metric space (X, d). By $\alpha(\mathrm{A})$ we denote the infimum of all $\varepsilon>0$ such that A admits a finite covering consisting of subsets with diameter less than ε. (See Kuratowski [2]).

We will need the following two properties of the number α :
a) $\alpha(\mathrm{A})=0$ iff A is precompact,
b) $\alpha(\mathrm{B}+\mathrm{A}) \leq \alpha(\mathrm{B})+\alpha(\mathrm{A})$, for any bounded subsets A, B of some Banach space X .

A continuous mapping $T: X \rightarrow X$ from a metric space (X, d) into itself is said to be α-Lipschitz with constant L, if for any bounded set $A C X$ we have

$$
\alpha(\mathrm{T}(\mathrm{~A})) \leq \mathrm{L} \alpha(\mathrm{~A}) \quad, \quad \mathrm{o} \leq \mathrm{L}<+\infty .
$$

If the constant $\mathrm{L}<\mathrm{I}$ the mapping T is said to be α-contractive (see Darbo [3]). In the case when $\alpha(T(A))<\alpha(A)$, for any bounded set $A \subset X$, such that $\alpha(\mathrm{A})>0$, the mapping T is called densifying (see [4]).

Clearly any completely continuous mapping (i.e. T is continuous and maps bounded sets into precompact ones) is $\alpha-$ Lipschitz with constant $\mathrm{L}=0$.

It is easy to verify that if T satisfies

$$
\begin{equation*}
\mathrm{d}(\mathrm{~T}(x), \mathrm{T}(y)) \leq \mathrm{Ld}(x, y) \quad, \quad \forall x, y \in \mathrm{X} \tag{I}
\end{equation*}
$$

then T is also α-Lipschitz with constant L . If condition (I) holds for $\mathrm{L}<\mathrm{I}$ then T is called contractive.
(*) Pervenuta all'Accademia il 9 ottobre 1970.
(**) The author was supported by fellowship of the National Research Council - Italy (CNR) and partially supported by AF grant AFOSR 68-1462.

Note that contractive and completely continuous mappings are densifying. Furthemore on a Banach space the sum of a contractive mapping (or more generally a densifying mapping) and a completely continuous mapping is densifying.

The following definition was introduced by Granas [5]. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a continuous mapping from a Banach space X into a Banach space Y . If the number

$$
|\mathrm{T}|=\lim _{\|x\| \rightarrow \infty} \sup \frac{\|\mathrm{T}(x)\|}{\|x\|}
$$

is finite then the mapping T is said to be quasibounded and $|T|$ is called the quasinorm of T. Evidently a continuous linear mapping $\mathrm{H}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasibounded and the quasinorm $|\mathrm{H}|$ of H coincides with the norm $\|\mathrm{H}\|$ of H .

The following theorem was proved in [6].
Theorem A. Let T : X $\rightarrow \mathrm{X}$ be a quasibounded densifying mapping from a Banach space X into itself. Let $|\mathrm{T}|<\mathrm{I}$, then the equation $y=x+\mathrm{T}(x)$ has at least one solution for each $y \in \mathrm{X}$.
2. An intersection theorem. Let $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ be a direct sum of two subspaces $\mathrm{A} \subset \mathrm{X}$ and BCX . By $\mathrm{P}_{\mathrm{A}}: \mathrm{X} \rightarrow \mathrm{A}$ we denote the projection mapping of X onto A and by $\mathrm{P}_{\mathrm{B}}: \mathrm{X} \rightarrow \mathrm{B}$ the projection mapping of X onto B . The mappings P_{A}, P_{B} are linear and we have

$$
\left\|\mathrm{P}_{\mathrm{A}}(x)\right\| \leq\left\|\mathrm{P}_{\mathrm{A}}\right\|\|x\| \quad, \quad\left\|\mathrm{P}_{\mathrm{B}}(x)\right\| \leq\left\|\mathrm{P}_{\mathrm{B}}\right\|\|x\|, \quad \forall x \in \mathrm{X}
$$

where $\left\|\mathrm{P}_{\mathrm{A}}\right\|,\left\|\mathrm{P}_{\mathrm{B}}\right\|$ are the norms of P_{A} and P_{B} respectively.
Theorem i. Let $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ and let $f: \mathrm{A} \rightarrow \mathrm{X}$ and $g: \mathrm{B} \rightarrow \mathrm{X}$ be such that

$$
\begin{array}{ll}
f(a)=a+\mathrm{F}(a), & \forall a \in \mathrm{~A}, \\
g(b)=b+\mathrm{G}(b), & \forall b \in \mathrm{~B},
\end{array}
$$

where the mappings F and G are α-Lipschitz with constants L and L^{\prime} respectively which satisfy

$$
\mathrm{L}\left\|\mathrm{P}_{\mathrm{A}}\right\|+\mathrm{L}^{\prime}\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}
$$

If the mappings F and G are also quasibounded with quasinorms satisfying

$$
|\mathrm{F}|\left\|\mathrm{P}_{\mathrm{A}}\right\|+|\mathrm{G}|\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}
$$

then $f(\mathrm{~A}) \cap g(\mathrm{~B}) \neq \varnothing$.
Proof. Since $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ any element $x \in \mathrm{X}$ can be represented as follows

$$
x=a-b \quad, \quad a \in \mathrm{~A} \quad, \quad b \in \mathrm{~B}
$$

Let $T=T_{1}+T_{2}$, where $T_{1}=F \circ P_{A}$ and $T_{2}=-G \circ P_{B}$. The mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is densifying. Indeed, for any bounded subset DCX such that
$\alpha(\mathrm{D})>0$ we have (see property b) of Introduction)

$$
\begin{gathered}
\alpha(\mathrm{T}(\mathrm{D})) \leq \alpha\left(\mathrm{F} \circ \mathrm{P}_{\mathrm{A}}(\mathrm{D})\right)+\alpha\left(\mathrm{G} \circ \mathrm{P}_{\mathrm{B}}(\mathrm{D})\right) \leq \mathrm{L} \alpha\left(\mathrm{P}_{\mathrm{A}}(\mathrm{D})\right)+\mathrm{L}^{\prime} \alpha\left(\mathrm{P}_{\mathrm{B}}(\mathrm{D})\right) \leq \\
\leq \mathrm{L}\left\|\mathrm{P}_{\mathrm{A}}\right\| \alpha(\mathrm{D})+\mathrm{L}^{\prime}\left\|\mathrm{P}_{\mathrm{B}}\right\| \alpha(\mathrm{D})<\alpha(\mathrm{D})
\end{gathered}
$$

The mapping T is also quasibounded with quasinorm $|\mathrm{T}|<\mathrm{I}$. The proof of this statement is essentially the same as that given by Granas in [I].

Hence by Theorem A there exists at least one element $x^{\prime} \in X$ such that $x^{\prime}+\mathrm{T}\left(x^{\prime}\right)=$ o i.e.

$$
\mathrm{o}=a^{\prime}-b^{\prime}+\mathrm{F}\left(a^{\prime}\right)-\mathrm{G}\left(b^{\prime}\right)
$$

which implies $f\left(a^{\prime}\right)=g\left(b^{\prime}\right)$ and this proves the theorem.
The above theorem contains as a particular case the result by Granas [I] for F and G completely continuous. In this case the condition $\mathrm{L}\left\|\mathrm{P}_{\mathrm{A}}\right\|+$ $+\mathrm{L}^{\prime}\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}$ is trivially satisfied since $\mathrm{L}=\mathrm{L}^{\prime}=\mathrm{o}$.

From Theorem I we obtain the following corollaries.
Corollary i. Let $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ and let $f: \mathrm{A} \rightarrow \mathrm{X}, g: \mathrm{B} \rightarrow \mathrm{X}$ be such that

$$
\begin{array}{ll}
f(a)=a+\mathrm{F}(a)+\mathrm{M}(a), & \forall a \in \mathrm{~A}, \tag{2}\\
g(b)=b+\mathrm{G}(b)+\mathrm{N}(b), & \forall b \in \mathrm{~B},
\end{array}
$$

where the mappings M and N are completely continuous and the mappings F and G are α-Lipschitz with constants L and L^{\prime} respectively such that

$$
\mathrm{L}\left\|\mathrm{P}_{\mathrm{A}}\right\|+\mathrm{L}^{\prime}\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}
$$

Let the mappings F and G be also quasibounded with quasinorms satisfying

$$
|\mathrm{F}|\left\|\mathrm{P}_{\mathrm{A}}\right\|+|\mathrm{G}|\left\|\mathrm{P}_{\mathrm{B}}\right\| \leq \beta \quad, \quad 0 \leq \beta<\mathrm{I}
$$

and let the mappings M and N be quasibounded with quasinorms such that

$$
|\mathrm{M}|\left\|\mathrm{P}_{\mathrm{A}}\right\|+|\mathrm{N}|\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}-\beta .
$$

Then $f(\mathrm{~A}) \cap g(\mathrm{~B}) \neq \varnothing$.
Proof. Let $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$, where $\mathrm{T}_{1}=\mathrm{F} \circ \mathrm{P}_{\mathrm{A}}+\mathrm{M} \circ \mathrm{P}_{\mathrm{A}}, \mathrm{T}_{2}=-\mathrm{G} \circ \mathrm{P}_{\mathrm{B}}-\mathrm{N} \circ \mathrm{P}_{\mathrm{B}}$. The mapping T is densifying. Indeed

$$
\begin{gathered}
\alpha(\mathrm{T}(\mathrm{D})) \leq \alpha\left(\mathrm{F} \circ \mathrm{P}_{\mathrm{A}}(\mathrm{D})\right)+\alpha\left(\mathrm{M} \circ \mathrm{P}_{\mathrm{A}}(\mathrm{D})\right)+\alpha\left(\mathrm{G} \circ \mathrm{P}_{\mathrm{B}}(\mathrm{D})\right)+\alpha\left(\mathrm{N} \circ \mathrm{P}_{\mathrm{B}}(\mathrm{D})\right) \leq \\
\leq \mathrm{L} \alpha\left(\mathrm{P}_{\mathrm{A}}(\mathrm{D})\right)+\mathrm{L}^{\prime} \alpha\left(\mathrm{P}_{\mathrm{B}}(\mathrm{D})\right)<\alpha(\mathrm{D}) .
\end{gathered}
$$

The mapping T is also quasibounded and $|\mathrm{T}|<\mathrm{I}$. Hence by Theorem I we get the result.

In Corollary I instead of (2) we could consider the following mappings

$$
\begin{align*}
& f(\mu ; a)=a+\mathrm{F}(a)+\mu \mathrm{M}(a), \\
& g(\mu ; b)=b+\mathrm{G}(b)+\mu \mathrm{N}(b),
\end{align*}
$$

where the mappings F , G satisfy the same hypothesis of Corollary I and the quasinorms of M, N and the real number μ are such that

$$
|\mu|\left(|\mathrm{M}|\left\|\mathrm{P}_{\mathrm{A}}\right\|+|\mathrm{N}|\left\|\mathrm{P}_{\mathrm{B}}\right\|\right)<\mathrm{I}-\beta \quad, \quad \mathrm{o} \leq \beta<\mathrm{I} .
$$

Then $f(\mu ; \mathrm{A}) \cap g(\mu ; \mathrm{B}) \neq \varnothing$. (Evidently for $\mu=\mathrm{I}$ we obtain Corollary I). Let R denote the real numbers then we have

Corollary 2. Let $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ and let $f: \mathrm{R} \times \mathrm{A} \rightarrow \mathrm{X}$ and $g: \mathrm{R} \times \mathrm{B} \rightarrow \mathrm{X}$ be such that

$$
\begin{array}{ll}
f(\lambda ; a)=a+\lambda \mathrm{F}(a), & \forall a \in \mathrm{~A}, \\
g(\lambda ; b)=b+\lambda \mathrm{G}(b), & \forall b \in \mathrm{~B},
\end{array}
$$

where λ is a real number such that $|\lambda| \leq 1$ and the mappings F, G are $\alpha-$ Lipschitz with constants $\mathrm{L}, \mathrm{L}^{\prime}$ respectively, satisfying

$$
\mathrm{L}\left\|\mathrm{P}_{\mathrm{A}}\right\|+\mathrm{L}^{\prime}\left\|\mathrm{P}_{\mathrm{B}}\right\|<\mathrm{I}
$$

If the mappings F, G are also quasibounded with quasinorms satisfying

$$
\begin{equation*}
|\lambda|\left(|\mathrm{F}|\left\|\mathrm{P}_{\mathrm{A}}\right\|+|\mathrm{G}|\left\|\mathrm{P}_{\mathrm{B}}\right\|\right)<\mathrm{I}, \tag{3}
\end{equation*}
$$

then $f(\lambda ; \mathrm{A}) \cap g(\lambda ; \mathrm{B}) \neq \varnothing$.
Corollary 3. Let X, f, g and λ be as in Corollary 2. If instead of the condition (3) the mappings F, G satisfy

$$
\begin{aligned}
& \|\mathrm{F}(x)\|=\mathrm{o}(\|x\|) \quad \text { as } \quad\|x\| \rightarrow \infty \\
& \|\mathrm{G}(x)\|=\mathrm{o}(\|x\|) \quad \text { as } \quad\|x\| \rightarrow \infty
\end{aligned}
$$

then $f(\lambda ; \mathrm{A}) \cap g(\lambda ; \mathrm{B}) \neq \varnothing$.
The condition $|\lambda| \leq 1$ in Corollary 2 and 3 is required in order that the mapping $\lambda \mathrm{T}$ be densifying.

Corollary 3 in the particular case of $\lambda=\mathrm{I}$ and F , G completely continuous was proved by Granas [I].

While this paper was in print Petryshyn pointed out to me that similar results were obtained in [7] for P -compact operators.

Bibliography

[I] A. Granas, On a geometrical theorem in Banach spaces, "Bull. Acad. Pol. Sci. Cl. III», 5, N. 9, 873-877 (in Russian), (1957).
[2] C. KURATOWSKI, Topologie, «Monografie Matematiczne», Tom 20, Warszawa 1958.
[3] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, "Rend. Sem. Mat. Padova», 24, 84-92 (1955).
[4] M. FUri and A. Vignoli, A fixed point theorem in complete metric spaces, «Boll. Un. Mat. It.», serie IV, N. 4-5, 505-509 (1969).
[5] A. Granas, On a class of nonlinear mappings in Banach spaces, «Bull. Acad. Pol. Sci. Cl. III», 5, N. 9, 867-870 (1957).
[6] A. Vignoli, On quasibounded mappings and nonlinear functional equations (to appear).
[7] W. V. Petryshyn, Further remarks on nonlinear P-compact operators in Banach space, «J. Math. Anal. Appl.», I6, N. 2, 243-253 (i966).

