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Analisi funzionale, — On the theory o f fixed  points fo r  some 
classes o f mappings I I I .  Nota n  di V a s i l e  I s t r a t e s c u  e A n a  

I s t r a t e s c u ,  presentata dal Socio G. S a n s o n e .

RIASSUNTO. ■ In questo lavoro si studiano alcune condizioni sufficienti affinché un 
operatore abbia dei punti uniti; alcuni risultati generalizzano quelli di Rothe e Krasnoselskiï.

i. INTRODUCION. Let £€ be a real or complex Banach space and C be 
a closed bounded set in 9C. If  S is a completely continuous m apping of C 
into C, then according to the Shauder fixed point theorem  S has a fixed 
point in C if C is convex. Using a variational principle, Schauder fixed 
point theorem  was extended for the existence of solutions in certain balls 
Br of the space 9C for the nonlinear equation of the form

T (or) =  S O)

where S is completely continuous T  is essentially a strongly monotone 
potential m apping. A nother direction of extension of Schauder fixed point 
theorem  was for the existence of fixed points for completely continuous 
m appings S of Br into 0C which on the boundary dBr of Br satisfy the 
condition

IIS ( x )  — * II2 >  IIS* II2 — II A* II2
These extensions are due by Rothe [6], Krasnoselskiï [5], A ltm an [i], 

[2], K acurovski [4] and Petryschin [7].
The purpose of this Note is to obtain theorems of the above type for 

the class of densifying operators.

2. Let 0C be a Banach space and K be a bounded set in 0C. We define [3] 
the K uratovski num ber a (E) of E as the infimum of all s > o  such 
tha t there exists a finite covering of E with balls with radius smaller 
than  £.

The properties of num ber oc(-) are the following:

0  o <  a (A) <  diam eter of A.

2) a  (A U B) <  m ax { a (A) , a (B )} .

3) a (A) — o, iff A  is precom pact.

(*) Pervenuta all’Accademia il 15 luglio 1970.
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Definition I .  A n operator T  is called densi tying if for each bounded
set A

a (TA) <  (A)

and is called oc-contraction if there exists k e [o , 1) independent of A such 
that

a (TA) <koL (A) .

Remarks. I t is clear th a t every completely continuous operator is 
oc-contraction and th a t every oc-contraction is densifying. These classes 
were considered by D arbo and Sadovski.

A  more general class of operators was considered in [9] by

Definition 2. A n operator is called locally power densifying, if for each 
bounded set A C AC there exists an integer n =  n (A) such that

a (T* A) <  a (A)

and is called locally power contraction if for each bounded set A  there 
exists n — n (A) and k e [o , 1) such tha t a ('T* A) <  k<x. (A).

3. Generalizations of some fixed point theorems.
The definitions and notations of § i~2 rem ain valid. A n operator is 

called demicontinuous if xn -> x  strongly in AC the Txn -> T x  weakly in AC* 
since we consider T  to be an operator from AC to AC*.

THEOREM 3.1. Let AT be a complex reflexive Banach space and T : 0C-> AC* 
he a mapping from  AC to AC* such that T is demicontinuous and

\(Tx —  T y , x — y ) \  >  ß || x — y  ||2 

fo r  all x  , y  E AC and some constant ß >  o. Let S be an &-contraction such that 

(1) y  (Sir —  To) e {u  , u e AC*, \\u\\ <  r*, r* <  r}

fo r  all x  e Br , r  >  o and a (SE) <  ßoc (E).
Then there exists at least one point x 0 e Br such that

Tir0 =  S;r0 .

Proof. The proof is sim ilar to proof of theorem  1 in [7] and we give 
here only modifications in th a t proof for obtain our theorem.

From  hypotheses and Zarantonelo-Browder theorem  T “ 1 is well-defined 
on all AC* and the operator T “ 1 S m aps Br into Br . Also

y r i  Sr — T" 1 II <  I  ( Il Sy -  y ).
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This gives that T  1 S is a densifying operator on Br and since it is continuous 
we find a fixed point x 0 such tha t

T " 1 S^o =  x 0

and the theorem  is proved.

Remark. T he case when S is completely continuous, is theorem  I of 
Petryshin [7]. Also theorem  2 of [7] has a variant in our context and we 
omit this.

Now, we wish to present some generalizations of classical theorem  of 
Rothe [6], Krasnoselskii [5] and A l’tm an [1], [2]. These generalizations 
are obtained w ithout use of the notion of the degree of a m apping in the 
sense of Leray-Schauder (see the proof of Petryshin of these theorems [7]).

Theorem 3.2. I f  S ts a densifying continuous mapping form  Br to 9C 
such that fo r  every x  e Br

Ik — s *||2 >  y s*  y2 — hx y2
then S has at least one fixed  point in Br fo r  the case 9C is a Hilbert space 

and  S is a-contraction with k < — fo r  the case of Banach spaces.

Proof. W e define the retraction m ap of X on Br

R u =
u

ru

if IIu\\ <  r  

if y u\\ >  r

and consider the m apping Sx (x) =  RSx  on Br into Br . By a the theorem  
of G. D arbo [3] p. 92, Sx is a densifying operator and by a theorem  of 
Sadovski [10] we find a fixed point x 0 in Br ) S1x 0 = x 0. Now, it is clear 
tha t Xq is also a fixed point for S. Indeed since x 0 e B^, then either ||* 0 || <  r  
or ||*o-|| = r

( S*0
X Q “  X q =  R S * 0 =  \

( r l s ^

if II S^o II <  r

if I! S*0 \\ > r

Thus, it is sufficient to discuss the case when ||S ^0|| >  r, i.e. the equation

S*o — 0̂ x o Xo = II S-Tq II

If  ||* 0 || < r  then we obtain clearly a contradiction. Thus remains only 
the case ||* 0 || = r  and thus X0 >  1. Clearly

Iko II2 — II S*o I I2 =  Iko Xq I I2 =  (1 — X0)2 r
and

l|S^oll2- l k o l l 2 =  k o - i ) r .
Since XQ >  I,  we m ust have X0 =  I i.e. x 0 is a fixed point for S.



4 6 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. X L IX  -  Ferie 1970 [46]

As special cases we obtain some generalizations of theorems proved by 
Rothe [6] and Krasnoselskii [5].

Theorem 3.3. I f  S is a continuous densifying mapping from  Br to 9C 
such that fo r  every x  € 3>Br

. l i s * II < I M I

then S has at least one fixed  point in Br fo r  0C a Hilbert space.

THEOREM 3.4. I f  SC is a Hilbert space and  S be a continuous densifying 
mapping from  Br to 9C such that fo r  every x  e

(Sx ,x )  < \ \ x f

thus S has at least one fixed  point in Br .

Remark. The essential role in the application of D arbo’s theorem  is 
the relation concerning the retraction R,

Il R u —  R u' y <  y u —  u! y

for the case of H ilbert spaces and

Il Ru  —  Ru' y <  2 II u —  ^ '| |

for the case of Banach spaces. Perhaps, the relation || R u — Ru' || <  \\u —  u'\\ 
is valid in general. But the authors are unable to prove this.
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