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E quazion i differenziali. — Investigations in the topological method 
of Wazewski. N o ta n  di J. W. B e b e r n e s  e J. D. S c h u u r  ((*) **}, pre­
sentata dal Socio G. Sansone.

RIASSUNTO. —■ Il metodo di Wazewski s’è esteso all’equazione y'  =  /  ( t y )  senza una 
condizione di unicità usando i teoremi di applicazioni di multivalori e di insiemi invarianti.

1. The topological m ethod of Wazewski fi] is used to show the exist­
ence of at least one solution of x r =  f  ( t , x) which remains in an open set V 
on its m axim al interval of existence. It is assumed tha t the equation satis­
fies hypotheses for the local existence and uniqueness of solutions on an open 
set U  and tha t V C U . The m ethod relies on the continuity of the consequent 
m apping, i.e. the m apping of V onto the boundary of V under the action of 
solutions.

If  the assum ption of uniqueness is dropped, then the consequent m app­
ing m ay take a point onto a set. Hence, it becomes a set valued m apping. 
To preserve the m ethod of W azewski it is then necessary to show th a t the 
consequent m apping is upper semicontinuous, in the sense of set valued 
mappings, and also th a t the image of a point under this m apping is a com pact 
and connected set.

Such a program  has been carried out by Jackson and Klaasen [2] and 
it is also the purpose of this note. By using the theories of set valued m app­
ings and of invarian t sets we sim plify their work. W e also show th a t the 
upper sem icontinuity of the consequent m apping depends upon the func­
tion appearing on the righ thand  side of the differential equation as well as 
upon the point P.

2. Let U  be an open set in En+1. Points in U  will be denoted by 
P =  (tp\,xp)y or Vn =  (4 , xn)> or sim ply ( t , x) where t  € E 1 and at € EL On 
the set C (U) of all continuous functions m apping U  into En with the compact 
open topology, i.e. uniform  convergence on compact subsets, let H =  { f a : a e A} 
be an indexe,d subset. On E”+1x C (U ), use the product topology. For each 
a £ A we have

(Ja) X ' = f a ( t , x ) -
Let f  ( t , P) =  cpa (t ; tp , xp), or sim ply cp (/), denote a solution of (Ia) 

with (pa (tp , P) =  x p .
The index a will be om itted when a single equation is considered.
Let 3U  denote the frontier of U . Let V  be an open subset of U , let 3V 

be the frontier of V  in E^+1 and F (V) be the frontier of V  relative to U.

(*) Pervenuta all’Accademia il 15 luglio 1970.
(**) This work was done at the Istituto Matematico dell’Università di Firenze under 

the auspices of the Italian Research Council (C.N.R.).
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Let V =  V U F  (V), let U — V be the com plem ent of V  in U, and let 
p (A , B) = ' in f { \x  — y  | : x  e A  , y  e B}  where | • | is a norm  in E*+1.

A  point Q e F  (V) is a consequent of a point P g V  (relative to (1)) if 
there exists a solution 9 ( t , P) of (1) and b with tP < b <  tq such that 
9 ( t , P) is defined on [tP , ìq ]  , ( t , 9 ( t , P)) G V  for tP < t  <  b , ( t , 9 ( t , P)) G 
G F (V) for b <  t < t q ,  and (tq , 9 (/q , P)) =■■ Q. The point Q G F (V) is a 
consequent of a point P € F  (V) (and P m ay equal Q) if there exists a solution 
9 ( t , P) of (1) such tha t ( t , 9 ( / ,  P)) G F (V) for t G [tP , /q] and 9 (£q , P) =  .

Consequents will also be called points of egress from V. An egress point Q 
is a strict egress point if, for every solution 9 (/ , Q) , =  sup { t : (s , 9 (s , Q)) 0
G F  (V) , <  /} <  00 and there exists a sequence {4} such that
4  ^  y 4  >  and ( 4 , 9  (4 , Q))-e U  — V. For ( P , / )  G V X H, let G ( P , / )
be the set of consequents of P relative to (1). Then G : V x H - > F  (V) is 
the consequent mapping. In  our theorems, G (P , / )  will be nonem pty. 
These definitions follow Jackson and Klaasen.

A  set valued m apping G from X into Y , X and Y metric spaces, is 
upper semicontinuous (USC) at x  G X if (i) G (x) is compact and (ii) for 
any open set S O G  (x) there exists a neighborhood T  of x  such that 
G (T) C S. If  G is USC at each x  G X, then G is USC on X.

3. W e shall show th a t the consequent m apping is USC,
T h eo rem  i. Let G be the consequent mapping from  V x H  into F (V) 

and let (Po ,/o ) G V X H. Assume that all points of G (Po , f f )  are points of 
strict egress and assume that no solution of (Io) which passes through Po appro­
aches 3V —  F (V) fo r  t >  to . Then G is USC at (Po , f f) .

Proof. Let 9 (t) be a solution of (Io) with m axim al interval of existence 
(a , ß). As t  -> ß , ( t , 9 (/)) 3U . If, additionally, ( t , 9 (t)) C V  for to <  t <  ß,
then ( t , 9 (4)) -> W — F (V) as /  -> ß. Thus, our hypotheses im ply that 
( t , 9 (t)) intersects F  (V) at some t >  to and th a t G (Po , fo) is nonem pty.

G,(Po , fo) is compact. Let {Qn} be a sequence of points in G (Po , fo) 
in d  let cpn (t) =  cpn ( t , Po) be a solution of (Io) such tha t <pn (4) — Qn. By 
the K am ke convergence theorem  [3, p. 14] there is a subsequence {9^ (f) ] 
which converges to a solution 90 (t) =  90 ( t , P0) of (I0). Since 90 (f) intersects 
F (V) 1 and every point of G (Po , fo) is a strict egress point there exists a 
c > t0 such that cp0 (t) is defined on \t0 , c] and (c , 90 (c)) G U  — V. Thus, 
for k sufficiently large, (c , 9  ̂ (c)) G U —  V which implies t0 <  tk < c. Choose 
now a subsequence {tm } of {4}  , and the corresponding subsequence { (pm (t) } 
of y such th a t tm-> b <  c. Then cpm (tm) (p0 (b). Let Q0 =  (b , 90 (#)),
then Qm -> Q0 and Q0 e G  (P0 , / 0).

To show th a t G satisfies (ii) in the definition of USC we can construct 
a proof by contradiction, sim ilar to the one above, again based on the Kam ke 
convergence theorem.

N ext we exam ine when the image of a point under the consequent m app­
ing is connected. This is sim ilar to the Kneser theorem  on the connectedness 
of cross sections of solution funnels, and in fact we state K neser’s theorem
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as a corollary to theorem  3. To prove our theorem  we use a technique of 
Y orke [4].

A  set S C V  is positively weakly invariant if, through each point P e S 
there exists at least one solution <p ( / ,  P) of (i) whose positive sem itrajectory 
(he., { ( t , 9 ( t , P)) : t  >  tp and t lies in the m axim al interval of existence 
of cp ( t , P)}) lies in S. Negatively weakly invariant is defined in a similar 
m anner and a set which is both positively and negatively weakly invariant 
is weakly invariant. W e note th a t S is weakly invariant if and only if S is 
a union of trajectories.

T h eo rem  2 [4, p. 359]- I f  R and S are positively weakly invariant 
and closed relative to V and i f  V =  R U S, then R f i S  is positively weakly 
invariant.

THEOREM 3. Let G be the consequent mapping from  V x P I into F (V) 
and let (P , / )  e . V x H .  I f  every solution of (1) which passes through P intersects 
F (V) at some t  >  tp and all points of G (P , f )  are points of strict egress, then 
G (P , / )  is connected.

Proof. If  P e F(V) the proof is immediate. So suppose tha t P e V  and 
suppose th a t G ( P , / )  is not connected. Using Theorem  1 we m ay assume 
tha t G (P , / )  =  Ci U C2 where Ci and C2 are two disjoint nonem pty sets 
which are com pact relative to U .

Let <F (Q) denote a trajectory  of a solution of (1) through Q. Let 
R =  {O (Q) C V : p (<D (Q) , Ci) <  p (® (O) , C2)} and let S be a sim ilar set 
with the inequalities reversed. Then R and S are positively weakly invariant, 
closed relative to V, and V  R U S. By Theorem  2, R f )  S is positively 
weakly invarian t.

Since trajectories containing P intersect both Ci and C2 , P e R n S .  
Hence, there exists 9 ( t , P) such th a t ( / ,  9 ( t , P)) e R n  S on [tp , 8), the right 
m axim al interval on which ( t , 9 ( t , P)) e V. Let [tp , ß) be the righ t m axim al 
interval of, existence of 9 ( t , P) (with respect to U). Since 9 ( / ,  P) leaves 
V , S <  ß, and ( t , cp ( t , P)) intersects F  (V) at, say, C i . Then o =  p (O (P) , Ci) 
=  P (® (P) > C2) >  o. From  this contradiction we conclude th a t G (P , / )  
is connected.

COROLLARY (Kneser [3, p. 15]). Let (P , / )  e U x H .  I f  every solution 
° f  (0  passing through P exists fo r  tp <  t <  t± , then F (t± , P) =  {(t± , cp (t±)) : 9 (t) 
is a solution of (1) passing through P} is compact and connected.

4. The m ethod of W azewski is phrased in terms of retraction m appings, 
but it is often applied in the following form.

T h eo rem  4. Let A C  V be a connected and compact subset relative to U 
and let J O H  be compact and connected. I f , fo r  each (P , f )  'e A  X J, all points 
° f  G (P , f )  are points of strict egress from  V and i f  G (A , J) is not connected, 
then there exists a (Po , fo) 0 A x J  and a solution 9 (t, Po) of (Io) such that 
( t , 9 ( t , Po)) e V  fo r  all t in the right maximal interval of existence of 9 ( t , P0).
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Proof. If, for each (P , / )  e A  X J, every solution of (1) which passes 
through P intersects F  (V) at some t >  then we m ay use Theorem s 1 and 3 
and the fact th a t a USC m apping preserves compactness and connectedness 
(see for exam ple [5]) to conclude th a t G (A , J) is com pact and connected.

The language of set valued m appings also simplifies Jackson’s and 
K laasen’s W azewski-type theorem  [2, Theorem  1]. Let A  and B be subsets 
of X with B C A .  If  there exists a USC m apping G of A  into B such that
x  eG  (pc) for each x  e B, then B is a set valued retract of A and G is a set
valued retraction from A into B.

THEOREM 5. Let S denote the set of egress points of V relative to (1) and
assume that all egress points are strict. I f  there exists a, Z C V (J S such that
Z n  S is a set valued retract of S but not of Z, then there is a point P € Z and 
a solution 9 ( t , P) of (1) such that ( t , 9 ( t , P)) € V fo r  all t in the right interval 
of existence of 9 ( t , P).

Proof. Assume th a t for all P e Z and every solution 9 ( t , P) of (1) , 9 ( t , P) 
intersects F  (V) at some t >  tp . Then the  consequent m apping G is a USC 
m apping from Z into S. Let H be the set valued retraction from S into Z f i  S 
given by  the hypotheses. Then HG : Z Z f] S in USC (see [5]) and for each 
P e Z n  S , P € HG (P) since P G H (P) C HG (P). Thus Z f i S i s a  retract 
of Z which is a contradiction.
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