ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Arrigo Cellina

Fixed points of noncontinuous mappings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 49 (1970), n.1-2, p. 30–33. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_49_1-2_30_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Fixed points of noncontinuous mappings (*). Nota (**) di Arrigo Cellina, presentata dal Socio G. Sansone.

RIASSUNTO. — Si danno teoremi di punto fisso per applicazioni non necessariamente continue.

Purpose of the present paper is to prove two fixed point theorems for mappings that are not necessarily demi-continuous (and therefore not necessarily continuous).

§ 1. In this section X is a Hausdorff locally convex space, X^* its dual and $\langle \cdot, \cdot \rangle : X^* \times X \to R$ is the pairing between X and X^* . For $M \subset X$, CK(M) is the set of non-empty compact and convex subsets of M. We also set δM to be the algebraic boundary of $M \subset X$ [2].

A [multivalued] mapping Γ is called [upper] demi-continuous [1], [2] if for every x and every open half space H in X containing $\Gamma(x)$, there exists a neighborhood N of x such that $\Gamma(\xi) \subset H$ for each $\xi \in N$.

A [multivalued] mapping Γ is called partially closed [4] if from $x_{\delta} \to x$, $y_{\delta} \in \Gamma(x_{\delta})$, $y_{\delta} \to y$, $\delta \in \Delta$, it follows that $L(x, y) \cap \Gamma(x) \neq \emptyset$, where $L(x, y) = \{x + \lambda(y - x) : \lambda \geq 0\}$, and x_{δ} and y_{δ} are generalized sequences.

It is not difficult to see that if Γ is upper demi-continuous, it is partially closed.

The following results are known:

Theorem 1 (Glebov [4]). Let K be a compact and convex subset of X, $\Gamma: K \to CK(K)$ be partially closed. Then Γ has a fixed point in K.

Theorem 2 (Ky Fan [3]). Let K be a compact and convex subset of X, $\Gamma: K \to CK(X)$ be upper demi-continuous. Assume that for every $x \in \delta K$, there exists a $y \in \Gamma(x)$ such that L(x, y) contains a point of K distinct from x. Then Γ has a fixed point in K.

The fact that a theorem holds, that contains both theorem 1 and 2, seems natural. For this purpose we consider mappings Γ that are continuous in the following sense:

(D₁) for each x in the domain of Γ and each continuous linear functional g that strictly separates x and $\Gamma(x)$, there exists a neighborhood U of O such that g strictly separates x + U and $\Gamma(x + U)$.

We have the following

PROPOSITION 1. i) if (D_1) holds, Γ is partially closed. ii) if Γ is partially closed and its range is contained in a compact set, (D_1) holds.

^(*) Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca del Comitato per la Matematica del C.N.R.

^(**) Pervenuta all'Accademia il 24 luglio 1970.

Proof. i): let $x_{\delta} \to x$, $y_{\delta} \in \Gamma(x_{\delta})$, $y_{\delta} \to y$, $\delta \in \Delta$; we claim $L(x,y) \cap \Gamma(x) = \emptyset$. Suppose this is not true. Then by a basic separation theorem, there exists a $g \in X^*$, a real $\varepsilon > 0$, such that $\inf \langle g, \Gamma(x) \rangle \geq k > k - \varepsilon \geq \sup \langle g, L(x,y) \rangle$. It follows that $\langle g,y \rangle \leq \langle g,x \rangle$. By (D₁) there exists a $U : \inf \langle g, \Gamma(x+U) \rangle \geq k_1 > k_1 - \varepsilon_1 \geq \sup \langle g,x+U \rangle$ for some real k_1 and $\varepsilon_1 > 0$. But then there exist δ' and $\delta'' \in \Delta$, such that $\delta' \prec \delta$ implies $x_{\delta} \in U$ and $\delta'' \prec \delta$ implies $y_{\delta} \in y + U$ so that for some δ''' , $\delta' \prec \delta'''$, $\delta'' \prec \delta'''$, we have $y_{\delta'''} \in \Gamma(x+U) \cap y + U$, that contradicts the above inequality.

ii): assume that (D_1) is not true. Let U_δ , $\delta \in \Delta$, be the neighborhood filterbase at O. There exist $g \in X^*$, $\xi_\delta \in U_\delta$, $y_\delta \in \Gamma$ (ξ_δ) , a real k and $\varepsilon > 0$, such that $\inf \langle g, \Gamma(x) \rangle \ge k > k - \varepsilon \ge \langle g, x \rangle$, while $\langle g, \xi_\delta \rangle \ge \langle g, y_\delta \rangle - \varepsilon_\delta$, where $\varepsilon_\delta \downarrow 0$. We can assume that $y_\delta \to y$: it follows then that $\langle g, x \rangle \ge \langle g, y \rangle$. By assumption

 $\inf \left\langle g \text{ , } \Gamma \left(x \right) \right\rangle \leq \sup \left\langle g \text{ , L} \left(x \text{ , } y \right) \right\rangle = \left\langle g \text{ , } x \right\rangle + \sup_{\lambda \geq 0} \lambda \left\langle g \text{ , } y - x \right\rangle = \left\langle g \text{ , } x \right\rangle$ contradicting the hypothesis on g.

THEOREM 3. Let $K \subset X$ be compact and convex and $\Gamma: K \to CK(X)$ be such that (D_1) holds. Assume that for every $x \in \delta K$, there exists a $y_x \in \Gamma(x)$ such that $L(x, y_x)$ contains a point of K distinct from x.

Then Γ has a fixed point in K.

Proof. The proof follows a pattern developed by Browder [2]. Assume that for every $x \in K$, $x \notin \Gamma(x)$. Then to each x we can associate a neighborhood of x, V_x , and a $g_x \in X^*$: sup $\langle g_x, V_x \rangle < \inf \langle g_x, \Gamma(V_x) \rangle$. Let $\{V_{x_i}\}_{i=1}^n$ be a finite subcovering of the open covering $\{V_x\}$ and let $\{p_i(\cdot)\}$ be a partition of unity subordinated to $\{V_{x_i}\}$. Consider the continuous map $f: X \to X^*$ defined by

$$f(x) = \sum_{i=1}^{n} p_i(x) \cdot g(x_i).$$

By a result in [2], there exists a $x^0 \in K$:

$$\langle f(x^0), x - x^0 \rangle \leq 0 \quad , \quad \forall x \in K.$$

Consider $f(x^0)$: it is a convex combination of those $g(x_i)$ such that $x^0 \in V_{x_i}$. By the definition of V_x then, $\langle g(x_i), x^0 \rangle < \inf \langle g(x_i), \Gamma(x^0) \rangle$ so that $\langle f(x^0), x^0 \rangle < \inf \langle f(x^0), \Gamma(x^0) \rangle$ or

$$\left\langle f\left(x^{0}\right)$$
 , $x^{0}-\Gamma\left(x^{0}\right)\right\rangle \leq$ 0

i.e. $\langle g(x^0), L(x^0, y_{x^0}) \rangle \leq 0$.

The last inequality and the assumption on $L(x, y_x)$ contradict (1).

Using Proposition I it is not difficult to see that Theorem 3 contains both Theorems I and 2.

§ 2. In this section we assume that X is a normed linear space and we restrict our attention to single-valued functions. We shall use the notations B $[x, \varepsilon]$ and B $[A, \varepsilon]$ to mean an open ε -ball about x and an ε -neigh-

borhood of ACX respectively. Set

$$J(x) = \{ y \in X^* : \langle y, x \rangle = |x|^2 ; |y| = |x| \}.$$

We consider mappings $f: K \rightarrow X$ with the following property:

(D2) For each $x \in K$, $\exists j_x \in J \ (f(x)-x)$ such that the real valued function $g_x: K \to R$ defined by

$$g_{x}(\xi) = \langle j_{x}, f(\xi) \rangle$$

is lower semi-continuous at $\xi = x$.

It is easy to see that there are no implications between (D_1) and (D_2) . Moreover while a demicontinuous function satisfies both (D_1) and (D_2) , the union of (D_1) and (D_2) is not equivalent to demicontinuity.

We have the following theorem

THEOREM 4. Let $K \subset X$ be compact and convex, $f: K \to X$ be such that (D_2) holds; moreover assume that for each $x \in K$, $\langle j_x, f(x) \rangle \leq \sup \langle j_x, K \rangle$. Then f has a fixed point in K.

Proof. Assume that $\forall x \in K$, $f(x) \neq x$. For each x there exists a $\delta(x) > 0$ (we assume $\delta(x) < 1/3 | f(x) - x |$) such that $\langle j_x, f(\xi) - x \rangle > 2/3 | f(x) - x |^2$ for all $\xi \in B[x, \delta(x)]$. Let us consider the open covering $\{B[x, \delta(x)/2]\}$ and let $\{B[x_i, \delta_i/2]\}_{i=1}^n$ be a finite subcovering (where $\delta_i = \delta(x_i)$). Let $\{p_i\}_{i=1}^n$ be a partition of unity subordinated to this last covering. For each x_i let $y_i \in K$ be such that $\langle j_{x_i}, y_i \rangle = \langle j_{x_i}, f(x_i) \rangle$. Consider the continuous map

$$g(x) = \sum_{i=1}^{n} p_i(x) y_i.$$

Since $g: K \to K$, there exists in K a $x^0 = g(x^0)$.

Let k = 1, 2, ..., s be such that $p_{ik}(x^0) \neq 0$, so that $x^0 \in B[x_{ik}, \delta_{ik}/2]$. Let $\delta_{i^0} = \max \{\delta_{ik}: k = 1, \dots, s\}$. Then

$$d\left(x_{ik}\,,\,x_{i^0}\right) \leq d\left(x_{ik}\,,\,x^0\right) + d\left(x^0\,,\,x_{i^0}\right) \leq \delta_{i^0}$$

so that $x_{ik} \in B[x_{i^0}, \delta_{i^0}]$. We have then

$$\begin{split} \mathbf{0} = & \langle j_{x_{i^0}}, g\left(x^0\right) - x^0 \rangle = \sum_{k=1}^s p_{ik}(x^0) \langle j_{x_{i^0}}, y_{ik} - x^0 \rangle = \sum_{k=1}^s p_{ik}(x^0) \langle j_{x_{i^0}}, f(x_{ik}) - x^0 \rangle = \\ & = \sum_{k=1}^s p_{ik}\left(x^0\right) \langle j_{x_{i^0}}, f\left(x_{ik}\right) - x_{i^0} \rangle + \langle j_{x_{i^0}}, x_{i^0} - x^0 \rangle \geq \end{split}$$

$$\geq 2/3 |f(x_{i^0}) - x_{i^0}|^2 - 1/3 |f(x_{i^0}) - x_{i^0}|^2 = 1/3 |f(x_{i^0}) - x_{i^0}|^2 > 0.$$

Therefore we have reached a contradiction and the Theorem is proved.

REFERENCES

- [I] F. E. BROWDER, Remarks on nonlinear functional equations, & Proc. Nat. Acad. Sci. U.S.A. », 51, 985–989 (1964).
- [2] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, «Math. Ann.», 174, 283-301 (1968).
- [3] KY FAN, Extensions of two fixed point theorems of F. E. Browder, «Math. Z. », 112, 234-240 (1969).
- [4] N. I. GLEBOV, On a generalization of the Kakutani Fixed Point Theorem, « Dokl. Akad. Nauk. SSSR », 185, 981–983 (1969).